二元数值积分研究.doc
约25页DOC格式手机打开展开
二元数值积分研究,5698字 25页 原创作品,已通过查重系统摘要数值积分在工程技术和自然科学领域运用十分广泛,为求解复杂型积分问题提供了很好的思路.本文通过构造二元函数的newton插值多项式以及lagrange插值多项式,给出二元函数在矩形区域上的数值积分表达式,同时还给出二元函数在矩形区域上的复合梯形公式,复合辛普...
内容介绍
此文档由会员 changxiaoniu 发布
二元数值积分研究
5698字 25页 原创作品,已通过查重系统
摘 要
数值积分在工程技术和自然科学领域运用十分广泛,为求解复杂型积分问题提供了很好的思路.本文通过构造二元函数的Newton插值多项式以及Lagrange插值多项式,给出二元函数在矩形区域上的数值积分表达式,同时还给出二元函数在矩形区域上的复合梯形公式,复合辛普森公式以及高斯求积公式的具体表达式,最后给出一个具体算例,分别用二元复合梯形公式、二元复合辛普森公式以及二元高斯求积公式求出了其积分值,比较发现二元高斯求积公式计算量最小,精度最高.
关键字: 二元数值积分;Lagrange插值多项式;二元复合梯形公式;二元复合辛普森公式;二元高斯求积公式
5698字 25页 原创作品,已通过查重系统
摘 要
数值积分在工程技术和自然科学领域运用十分广泛,为求解复杂型积分问题提供了很好的思路.本文通过构造二元函数的Newton插值多项式以及Lagrange插值多项式,给出二元函数在矩形区域上的数值积分表达式,同时还给出二元函数在矩形区域上的复合梯形公式,复合辛普森公式以及高斯求积公式的具体表达式,最后给出一个具体算例,分别用二元复合梯形公式、二元复合辛普森公式以及二元高斯求积公式求出了其积分值,比较发现二元高斯求积公式计算量最小,精度最高.
关键字: 二元数值积分;Lagrange插值多项式;二元复合梯形公式;二元复合辛普森公式;二元高斯求积公式