中心变异差分进化算法(外文资料及翻译).doc
约2页DOC格式手机打开展开
中心变异差分进化算法(外文资料及翻译),according to benchmark complex optimization problem, and puts forward the center based on adaptive mutation and crossover probability of differential evolution ...
内容介绍
此文档由会员 寻找宁夏的风 发布
According to benchmark complex optimization problem, and puts forward the center based on adaptive mutation and crossover probability of differential evolution algorithm--center differential evolution (variation center mutation-based differential, CMDE) algorithm is proposed to explain. The algorithm firstly improvement of the individual variation form the current generation, namely the group as the center, according to the variation vector in three random individual vector of the fitness function between the size relations, to determine the direction of the poor vector; Then give the adaptive crossover probability strategies that cross function through based on analysis of the function between individual vector to value in the distribution of internal group, to make sure that each individual crossover probability. Through several Benchmark function test showed that, CMDE algorithm has higher convergence speed, and to Benchmark complex problems of high precision, optimal performance.
针对高维复杂优化问题,提出了基于中心变异和自适应交叉概率的差分进化算法———中心变异差分进化(center mutation-based differential evolution, CMDE)算法。该算法首先改进了个体的变异形式,即把当前代的群体中心作为基向量,依据参加变异的三个随机个体向量间的函数适应值的大小关系,确定差向量的方向;然后给出了自适应交叉概率策略,即依据交叉的作用,通过分析个体向量间的函数适应值在群体内部的分布情况,确定每个个体的交叉概率。通过几个Benchmark函数的测试表明,CMDE算法具有较快的收敛速度,且对于高维复杂问题的求解精度高,寻优性能好。
针对高维复杂优化问题,提出了基于中心变异和自适应交叉概率的差分进化算法———中心变异差分进化(center mutation-based differential evolution, CMDE)算法。该算法首先改进了个体的变异形式,即把当前代的群体中心作为基向量,依据参加变异的三个随机个体向量间的函数适应值的大小关系,确定差向量的方向;然后给出了自适应交叉概率策略,即依据交叉的作用,通过分析个体向量间的函数适应值在群体内部的分布情况,确定每个个体的交叉概率。通过几个Benchmark函数的测试表明,CMDE算法具有较快的收敛速度,且对于高维复杂问题的求解精度高,寻优性能好。