混合信号温度控制电路[外文翻译].doc

约12页DOC格式手机打开展开

混合信号温度控制电路[外文翻译],mixed-signal temperature control circuit1 introductionnow the gas sensors are widely used, such as environmental monitoring, air quality control...
编号:10-117148大小:537.00K
分类: 论文>外文翻译

内容介绍

此文档由会员 huangbinbest 发布

混合信号温度控制电路[外文翻译]


mixed-signal temperature control circuit

1  Introduction
Now the gas sensors are widely used, such as environmental monitoring, air quality control, automotive and medical care. However, there are commercial high cost of gas sensors. In addition, the relatively high power consumption also makes them in the light of the battery-powered applications on handheld devices is not practical. CMOS integrated monolithically integrated gas sensor module to reduce the above shortcomings is a promising approach. CMOS not only because of mass production methods help to reduce costs, and can obtain reliable, repeatable performance [1]. Meanwhile, the on-chip CMOS circuitry is conducive to intelligent signal conditioning and monitoring.
 Most of the resistance of gas sensors using metal oxide-sensitive materials. Metal oxides (such as tin oxide [2], zinc oxide [3]) high temperature conditions in the appropriate (200 ° C -400 º C) can react with different gases, and their resistance will change as the gas concentrations Change. Therefore, resistance changes, and the optimum temperature and gas concentration can be inferred the type. However, under the high temperature reaction requires very large energy. In addition, the overall design of the circuit, on a single chip to accommodate a high-temperature region is a technical challenge. To overcome this problem, the heating circuit chip area must be isolated. Heating module can be placed on the diaphragm [1,4]. For the high temperature gas sensors

 

混合信号温度控制电路

1  简介
现在气体传感器被广泛的应用,如环境监测,空气质量控制,汽车和医疗保健。然而,目前得到商用的气体传感器的成本很高。此外,相对较高的功耗也使得它们在轻便的电池供电的手持式仪器上的应用不太实际。集成了气体传感器的CMOS单片集成模块在减少上述缺点方面是一个很有前景的方法。因为CMOS的批量生产方式不仅有助于降低成本,而且可以得到可靠的重复性能[1]。同时,片上CMOS电路有利于实现信号的智能调节和监控。
气体传感器的电阻大多采用金属氧化物敏感材料。金属氧化物(例如锡氧化物[2],氧化锌[3])在适合的高温条件下(200°C -400ºC)可以与不同的气体发生反应,它们的电阻会随着气体浓度的变化而发生变化。因此,从电阻的变化以及反应的最佳温度可以推断出浓度和气体的类型。然而,高温条件下的反应需要非常大的能量。此外,在整体设计电路时,在一块芯片上容纳一个高温区域是一项技术挑战。为了克服这个问题,加热区域必须与片上电路相隔离。可以将加热模块置于隔膜上[1,4]。对于高温气体传感器来说,监测和控制温度同样非常重要,因为同一种温度敏感材料在不同的温度下可以感知多种气体[5]。更进一步来说,由于气体敏感材料的性质和厚度,以及材料沉积后造成的能量消耗增加,仅仅从能量的消耗来预测温度是不够准确的。为了提高准确性和气体传感器的性能,片上温度控制电路是必需的。