金属团簇的第一性原理计算.doc

约33页DOC格式手机打开展开

金属团簇的第一性原理计算,摘要:本文采用密度泛函理论方法中的杂化泛函b3lyp,以及结合赝势基组lanl2dz对金属团簇 、 、 (n=2-4)的所有可能结构进行了研究,得到了这些结构的平均键能,形成能,离解能以及lumo、homo。通过比较离解能的大小,得出这些团簇为 、 、 、 、 、 的最稳定结构。关键词: 团簇;...
编号:15-141048大小:11.43M
分类: 论文>教育学论文

内容介绍

此文档由会员 movingwlkk 发布

金属团簇的第一性原理计算
摘要:本文采用密度泛函理论方法中的杂化泛函B3LYP,以及结合赝势基组LANL2DZ对金属团簇 、 、 (n=2-4)的所有可能结构进行了研究,得到了这些结构的平均键能,形成能,离解能以及LUMO、HOMO。通过比较离解能的大小,得出这些团簇为 、 、 、 、 、 的最稳定结构。
关键词: 团簇;W团簇; 团簇;密度泛函方法
First – Principles calculates of the metal clusters
Abstract: In this paper , We employ density functional theory in the hybrid functional B3LYP, with pseudopotential basis sets Lanl2DZ to study the metal clusters 、 、 (n=2-4)of all possible structure, get the average bond energy of those structures, formation energy, dissociation energy and the LUMO、HOMO. By comparing the size of dissociation energy. Come to these clusters as 、 、 、 、 、 the most stable structure.
Keyword: clusters;W clusters; clusters;Density function method (DFT)
目 录
1引言...........................................................................................1
2计算理论和方法............................................................................2
2.1 理论.......................................................................................2
2.1.1 密度泛函理论........................................................................2
2.1.2 Hohenberg-Kohn 定理............................................................2
2.1.3 Kohn-Sham方程 ...................................................................3
2.2 密度泛函近似...........................................................................4
2.2.1 局域密度近似.........................................................................4
2.2.2 广义梯度近似泛函....................................................................5
2.2.3 杂化密度泛函.........................................................................5
2.3 计算方法..................................................................................6
2.3.1 GAUSSIAN03.........................................................................6
2.3.2 GAUSSIAN形赝势基组..............................................................6
2.4 LUMO和HOMO............................................................................6
3 (n=2-4)的计算................................................................................7
4 (n=2-4)的计算................................................................................10
5 (n=4)的计算.................................................................................13
6结论................................................................................................16
参考文献............................................................................................18
谢辞....................................................................................................19