低浓度瓦斯水合物生成动力学(工学硕士论文).doc

约70页DOC格式手机打开展开

低浓度瓦斯水合物生成动力学(工学硕士论文),摘要低浓度瓦斯安全输送和利用技术缺乏等因素限制了矿井瓦斯抽采利用,造成了环境污染和资源浪费,水合物技术为充分利用瓦斯资源提供了新的尝试。瓦斯水合固化储运技术工业化的关键是水合物的快速稳定生成,因此对低浓度瓦斯水合物生成动力学及其促进剂研究具有非常重要的意义。本文利用可视化水合物装置,首先进行了低浓度瓦斯在纯水中水合物生...
编号:150-159033大小:7.28M
分类: 论文>生物/化学论文

内容介绍

此文档由会员 白痴学东西 发布

摘 要
低浓度瓦斯安全输送和利用技术缺乏等因素限制了矿井瓦斯抽采利用,造成了环境污染和资源浪费,水合物技术为充分利用瓦斯资源提供了新的尝试。瓦斯水合固化储运技术工业化的关键是水合物的快速稳定生成,因此对低浓度瓦斯水合物生成动力学及其促进剂研究具有非常重要的意义。
本文利用可视化水合物装置,首先进行了低浓度瓦斯在纯水中水合物生成动力学的3组实验,结果表明在无促进剂的静止体系中,水合物诱导时间较长,水合物诱导时间长达700min,且水合物生长极其缓慢。
进而研究了添加SDS的9组实验体系中低浓度瓦斯水合物生成动力学实验,结果发现SDS显著缩短了水合物生成宏观诱导时间,提高了水合物生长速率,诱导时间最短为30min,生长速率最大可达3.395×10-5m3•h-1。
接着研究了添加THF的9组实验体系及其与SDS复配的3组实验体系中低浓度瓦斯水合物生成动力学实验,结果表明THF改善了低浓度瓦斯水合物生成热力学参数,缩短了水合物生成的宏观诱导时间,加快了水合物生长速率,水合物生成诱导时间最短仅为14 min,最快生长速率为2.847×10-5 m3•h-1。THF-SDS复配体系中水合物生成诱导时间最短为31 min,水合物的生长速率比同比浓度的单一促进剂中水合物的生长速率大。
本文针对促进剂对低浓度瓦斯水合物生成动力学的影响,共进行了24组实验,获得了大量的实验数据和图像资料,得到了SDS、THF和THF-SDS促进剂体系对低浓度瓦斯水合物生成动力学的影响规律,为瓦斯固化储运在技术上实现工业化应用奠定了基础。
该论文有图39幅,表11个,参考文献82篇。

关键词:低浓度瓦斯;水合物;生成动力学;四氢呋喃;十二烷基硫酸钠

Abstract
The limitation of mine gas extraction using which caused environment pollution and wasting of resources is due to the low gas safety transportation, insufficiency of using technology and so on. Hydration technology provides a new attempt on fully using gas resources. The key to the industrialization of gas hydration curing storage technology is the rapid and stable generation of hydration, which has extremely significance for generating dynamics of low concentration of gas hydration.
This paper makes use of visualization devices. Firstly, it carries out three experiments about hydration generation dynamics of low concentration gas in pure water. The results of the experiments show that the hydrate induction time is so long, which can reach as long as 700min. The results also show that the hydrate formation rate is so slow. These experiments are carried out under static system without accelerator.
Secondly, it carries out low-concentration gas hydration generation kinetics about 9 experiments which add SDS. The consequence is that SDS shortens the macro induction time of hydrate formation and it also improves hydrate formation rate. The shortest induction time is 30min and the biggest formation rate is 3.395×10-5m3•h-1.
Thirdly, it carries out researches about low-concentration gas hydrate formation kinetics experiments of 9 experimental systems which add THF and three groups of experimental system with SDS mixed with. The results show that THF improves the thermodynamic parameters of low concentration of gas hydrate formation, and it also shortens the macro inducement time of hydration formation, and accelerates the hydrate formation rate. The shortest hydrate formation inducement time is 14 min, and the fastest growth rate is 2.847×10-5 m3•h-1. The shortest hydrate formation induction time is 31 min under the THF-SDS compounded system. The formation rate of hydrate is faster than that has single accelerator in the same proportion of concentration.
This paper focuses on the influences of the accelerator on low concentration gas hydration generating kinetics. It carries out 24 groups of experiments and it also gets lots of experimental data and image materials. At the same time, this paper gets the influencial rules of SDS, THF and THF-SDS accelerator system of low-concentration gas hydration generating kinetics. It establishes a foundation for the application industrialization of gas storage curing in technology.
The paper has thirty-nine figures, eleven tables and eighty-two references.

Keywords: low-concentration gas; hydrate; formation kinetics; tetrahydrofuran; sodium dodecyl sulfate


目 录
摘要 1
Abstract II
1 绪论 1
1.1 研究背景 1
1.2 目的和意义 1
1.3 主要研究内容及特色 2
1.3.1 研究内容 2
1.3.2 研究特色 3
1.4 文章结构 3
2 文献综述 5
2.1 气体水合物概述 5
2.1.1 基本概念 5
2.1.2 结构特征 5
2.1.3 物化性质 7
2.2 水合物生成动力学研究进展 10
2.3 促进剂对瓦斯水合物影响研究进展 11
2.4 本章小结 12
3 理论基础 13
3.1 水合物生成动力学理论 13
3.1.1 诱导时间 13
3.1.2 晶体成核 14
3.1.3 晶体生长 15
3.2 表面活性剂对水合物生成影响 17
3.2.1 表面活性剂概述 17
3.2.2 表面活性剂对水合物成核阶段的影响 18
3.2.3 表面活性剂对水合物生长速率的改善 18
3.2.4 表面活性剂作用下水合物生成诱导时间模型 19
3.3 本章小结 19
4 瓦斯水合物生成动力学实验系统 20
4.1 实验系统 20
4.1.1 可视高压反应釜 20
4.1.2 温度调控与测定系统 21
4.1.3 压力调控与测定系统 22
4.1.4 数字图像摄录系统 23
4.1.5 实验数据采集系统 23
4.1.6 气相色谱分析系统 24..