微型潜艇气动推进.doc
约74页DOC格式手机打开展开
微型潜艇气动推进,系统的设计与仿真大摘要微小型潜艇的应用意义重大,但现有的推进方式和供氧方式存在着结构复杂、质量大、经济性差、污染严重等各种各样的问题。本文提出一种全新的构想,即利用复合材料高压气瓶和气动马达等元件组合而成的气动系统为该种潜艇提供推进动力,同时气动马达的排气也能为舱室提供供人体呼吸的氧气,实现推进和供氧的...
内容介绍
此文档由会员 违规屏蔽12 发布
微型潜艇气动推进系统的
设计与仿真
大摘要
微小型潜艇的应用意义重大,但现有的推进方式和供氧方式存在着结构复杂、质量大、经济性差、污染严重等各种各样的问题。本文提出一种全新的构想,即利用复合材料高压气瓶和气动马达等元件组合而成的气动系统为该种潜艇提供推进动力,同时气动马达的排气也能为舱室提供供人体呼吸的氧气,实现推进和供氧的双重目标,使微型潜艇更加经济、环保、安全、可靠。并借助计算机仿真技术对设计方案进行计算和模拟,计算机仿真是利用系统的数学模型在计算机上进行的实验,它的特点是投资少、无风险、见效快以及不受实验条件的限制等。
因本文所涉及的学科较多,主要包括热力学、气体动力学、机械、控制、潜艇原理、仿真技术等学科的知识,故本文选择了先进的多学科领域系统建模与仿真软件SimulationX以及新兴的Modelica语言作为平台,设计并搭建了基于某微型旅游潜艇的气动推进系统模型。
该气动推进系统模型分为船桨系统子模型、减速器子模型、气动马达子模型、气动动力系统子模型、控制系统子模型以及三维模型子模型。建模和仿真的具体步骤包括:
(1) 利用进角系数法建立螺旋桨子模型以防止仿真中出现的中断或其他异常。
(2) 鉴于艇体阻力计算和潜艇运动的复杂性,对阻力和运动方程做了简化处理,将艇体表面的摩擦阻力作为计算总阻力的依据,并将复杂的潜艇六自由度运动简化为X、Y、Z三个方向的直线运动。
(3) 利用实验模型即输出特性来表达气动马达模型,不仅更接近实际情况,而且能有效缩短仿真计算时间。通过不同功率的气动马达与不同减速比的减速器以及船桨系统模型的匹配仿真,选择最为合适的气动马达和减速比。
(4) 根据所选马达的耗气量与潜艇续航时间计算满足要求的高压气瓶的工作压力和容积。考虑到高压气体在减压过程中,气体与阀的摩擦损耗以及大幅温降导致的能量损失,在动力系统中引入高压容积减压方式和热交换器,以提高气动系统的效率,增加潜艇的续航时间。
(5) 为了实现对微潜运动的控制,利用PID控制器调节流量阀的开口大小,继而调整气动马达的输出转矩和转数,从而控制潜艇在X、Y、Z三个方向的直线运动。通过经验法调整PID控制器的3个参数,获得了较为理想的位移响应曲线。通过合成微潜在X、Y、Z三个方向的位移,得到潜艇在三维空间中的运动。
(6) 最后,利用软件SimulationX中的MBS模块搭建潜艇的三维示意视图,将位移的仿真计算结果赋给三维模型,在仿真计算的过程中,可观察其三维运动轨迹,令仿真过程更加形象、生动。
Abstract
The application of mini-submarine is significant whereas there’re various problems in now available propulsive methods such as complicated structure, massive quality, low economical efficiency, severe pollution; etc. A bran-new idea has been conceived namely pneumatic propulsion system which includes high-pressure air bottle and air motor that can provide not only the propulsion power but also the oxygen supply for compartments. It’s a solution to dual targets that makes mini-sub more economical, more environment friendly, safer and more reliable. Design Scheme has been calculated and simulated with the help of computer simulation which is an experiment based on computer with mathematical model of system. It needs small investment and with no risk, fast effective and suffers no limitation of experiment condition.
The theme involves several disciplines, e.g., thermodynamics, pneumodynamics, machinery, control, principle of submarine, simulation technique, etc. Therefore, an advanced interdisciplinary modeling and simulation software SimulationX and a newly rising langue Modelica were adopted for the terrace. Pneumatic propulsion system based on a mini tourism submarine was constructed.
Propulsion system model consists of hull resistance submodel, propeller submodel, reducer submodel, air motor submodel, pneumatic system submodel and control system submodel and 3D submodel. Steps of modeling and simulation in detail include:
(1) Angular coefficient method was adopted to establish propeller submodel in order to avoid suspension and other unusual situations in the process of simulation.
(2) Due to the complexity of hull resistance calculation and submarine motion, the total resistance of the submarine was calculated according to frictional drag of the hull, further, the resistance and equation of motion in 6 DOF were simplified to 3 displacements in X、Y、Z directions.
(3) Experimental model, or output characteristics were applied to demonstrate air motor which can not only approximate reality but also shorten simulation duration effectively.Through matching simulation among different air motors and different reduction ratios and submarine-propeller, selected the most appropriate air motor and reduction ratio.
(4) Working pressure and volume of the required high-pressure air bottle were calculated according to air consumption of the selected air motor and the cruise duration of submarine. Considering the friction loss between air and valve and the energy loss caused by sharp temperature decline in process of decompression of high-pressure air, brought in volume-decompression method and heat exchanger to the propulsion system in order to improve efficiency of the pneumatic system similarly prolong cruise duration of the submarine.
(5) In order to realize the control of submarine motion, regulating flow valve stroking with PID c..
设计与仿真
大摘要
微小型潜艇的应用意义重大,但现有的推进方式和供氧方式存在着结构复杂、质量大、经济性差、污染严重等各种各样的问题。本文提出一种全新的构想,即利用复合材料高压气瓶和气动马达等元件组合而成的气动系统为该种潜艇提供推进动力,同时气动马达的排气也能为舱室提供供人体呼吸的氧气,实现推进和供氧的双重目标,使微型潜艇更加经济、环保、安全、可靠。并借助计算机仿真技术对设计方案进行计算和模拟,计算机仿真是利用系统的数学模型在计算机上进行的实验,它的特点是投资少、无风险、见效快以及不受实验条件的限制等。
因本文所涉及的学科较多,主要包括热力学、气体动力学、机械、控制、潜艇原理、仿真技术等学科的知识,故本文选择了先进的多学科领域系统建模与仿真软件SimulationX以及新兴的Modelica语言作为平台,设计并搭建了基于某微型旅游潜艇的气动推进系统模型。
该气动推进系统模型分为船桨系统子模型、减速器子模型、气动马达子模型、气动动力系统子模型、控制系统子模型以及三维模型子模型。建模和仿真的具体步骤包括:
(1) 利用进角系数法建立螺旋桨子模型以防止仿真中出现的中断或其他异常。
(2) 鉴于艇体阻力计算和潜艇运动的复杂性,对阻力和运动方程做了简化处理,将艇体表面的摩擦阻力作为计算总阻力的依据,并将复杂的潜艇六自由度运动简化为X、Y、Z三个方向的直线运动。
(3) 利用实验模型即输出特性来表达气动马达模型,不仅更接近实际情况,而且能有效缩短仿真计算时间。通过不同功率的气动马达与不同减速比的减速器以及船桨系统模型的匹配仿真,选择最为合适的气动马达和减速比。
(4) 根据所选马达的耗气量与潜艇续航时间计算满足要求的高压气瓶的工作压力和容积。考虑到高压气体在减压过程中,气体与阀的摩擦损耗以及大幅温降导致的能量损失,在动力系统中引入高压容积减压方式和热交换器,以提高气动系统的效率,增加潜艇的续航时间。
(5) 为了实现对微潜运动的控制,利用PID控制器调节流量阀的开口大小,继而调整气动马达的输出转矩和转数,从而控制潜艇在X、Y、Z三个方向的直线运动。通过经验法调整PID控制器的3个参数,获得了较为理想的位移响应曲线。通过合成微潜在X、Y、Z三个方向的位移,得到潜艇在三维空间中的运动。
(6) 最后,利用软件SimulationX中的MBS模块搭建潜艇的三维示意视图,将位移的仿真计算结果赋给三维模型,在仿真计算的过程中,可观察其三维运动轨迹,令仿真过程更加形象、生动。
Abstract
The application of mini-submarine is significant whereas there’re various problems in now available propulsive methods such as complicated structure, massive quality, low economical efficiency, severe pollution; etc. A bran-new idea has been conceived namely pneumatic propulsion system which includes high-pressure air bottle and air motor that can provide not only the propulsion power but also the oxygen supply for compartments. It’s a solution to dual targets that makes mini-sub more economical, more environment friendly, safer and more reliable. Design Scheme has been calculated and simulated with the help of computer simulation which is an experiment based on computer with mathematical model of system. It needs small investment and with no risk, fast effective and suffers no limitation of experiment condition.
The theme involves several disciplines, e.g., thermodynamics, pneumodynamics, machinery, control, principle of submarine, simulation technique, etc. Therefore, an advanced interdisciplinary modeling and simulation software SimulationX and a newly rising langue Modelica were adopted for the terrace. Pneumatic propulsion system based on a mini tourism submarine was constructed.
Propulsion system model consists of hull resistance submodel, propeller submodel, reducer submodel, air motor submodel, pneumatic system submodel and control system submodel and 3D submodel. Steps of modeling and simulation in detail include:
(1) Angular coefficient method was adopted to establish propeller submodel in order to avoid suspension and other unusual situations in the process of simulation.
(2) Due to the complexity of hull resistance calculation and submarine motion, the total resistance of the submarine was calculated according to frictional drag of the hull, further, the resistance and equation of motion in 6 DOF were simplified to 3 displacements in X、Y、Z directions.
(3) Experimental model, or output characteristics were applied to demonstrate air motor which can not only approximate reality but also shorten simulation duration effectively.Through matching simulation among different air motors and different reduction ratios and submarine-propeller, selected the most appropriate air motor and reduction ratio.
(4) Working pressure and volume of the required high-pressure air bottle were calculated according to air consumption of the selected air motor and the cruise duration of submarine. Considering the friction loss between air and valve and the energy loss caused by sharp temperature decline in process of decompression of high-pressure air, brought in volume-decompression method and heat exchanger to the propulsion system in order to improve efficiency of the pneumatic system similarly prolong cruise duration of the submarine.
(5) In order to realize the control of submarine motion, regulating flow valve stroking with PID c..