断路器机构系统动力学特性.rar
断路器机构系统动力学特性,摘要低压断路器常被作为低压配电支路或终端的开关使用。长期以来传统低压断路器产品的设计研发是一个凭借经验的大循环过程,不仅难以提高产品质量,而且耗费大量的时间和金钱。本课题针对cw1-3200型低压框架式断路器机构系统实际工作过程中存在机构运动死点、碰撞类型复杂以及燃弧现象严重等问题,在实验数据的基础上运用多体系统动力学...
该文档为压缩文件,包含的文件列表如下:
内容介绍
原文档由会员 违规屏蔽12 发布
摘 要
低压断路器常被作为低压配电支路或终端的开关使用。长期以来传统低压断路器产品的设计研发是一个凭借经验的大循环过程,不仅难以提高产品质量,而且耗费大量的时间和金钱。
本课题针对CW1-3200型低压框架式断路器机构系统实际工作过程中存在机构运动死点、碰撞类型复杂以及燃弧现象严重等问题,在实验数据的基础上运用多体系统动力学仿真分析软件ADAMS研究该机构系统的动力学特性和碰撞问题,通过对断路器动力系统的优化分析得到满足条件的最优值模型。
本论文主要研究内容是:
1. 采用UG与ADAMS软件完成对CW1-3200型低压框架式断路器机构系统的实体造型与动力学模型建立。
2. 通过有限元软件Altair HyperMesh与ABAQUS完成有限元建模,计算输出ADAMS/Flex柔性分析所需的模态中性文件MNF (Modal Neutral File),运用ADAMS软件对断路器机构系统进行多刚体与柔性仿真分析,获得了断路器机构系统的运动特性。刚、柔性对比分析结果表明基于柔性的动力学特性分析更趋近于理论与实际。
3. 在测试方案确定的基础上运用高灵敏度传感器完成对断路器机构系统的实验研究,并对仿真与实验数据进行对比分析,运用实验测试验证了仿真分析结果的正确性。
4. 利用ADAMS软件的Optimization优化分析模块,以动触头转动角速度为优化目标函数,对动力系统进行设计研究和优化设计分析。优化后模型的动触头合闸平均角速度提高了15.6%,该模型可以为本产品的改进及新产品的研发提供技术支持,同时合闸速度的提高也可以更好的避免触头间的燃弧现象。
基于实验与分析数据对断路器机构系统的动态仿真分析与优化设计,为以后产品的改进提供理论和实践上的支持。基于优化分析的产品工作结果表明,该研究方法达到了提高产品安全性、可靠性以及使用寿命的目的。
关键词 断路器;动力学特性分析;实验验证;优化设计
Abstract
Low-voltage circuit breakers are often used as low-voltage power distribution branches or terminal switches. Traditional design and development process of low-voltage circuit breakers by virtue of experience is a big cycle. Not only it is difficult to improve production quality, but also a lot of time and money is spent.
The ACB system has dead bodies, complex collision types, and serious arc phenomenon during practical movement. To solve these problems, ADAMS software was used to calculate and analyze the dynamics characteristics and contact problems based on experimental data, and the optimum value model of meeting specified conditions was obtained by optimizing the power system.
The main contents of this thesis:
1. UG and ADAMS software were used to complete CW1-3200 Low Voltage ACB solid modeling and dynamics modeling.
2. Finite element model was established by Altair HyperMesh and ABAQUS software, and MNF (Modal Neutral File) was calculated and outputted, which was required by ADAMS/Flex. ACB system was rigid and flex simulated and analyzed by ADAMS software, and motion characteristics of body system were obtained. The results showed that dynamics simulation analysis based on flex bodies was more close to theory and reality.
3. The appropriate measurement methods and high sensitivity sensors were adopted to complete the experimental study of ACB, and experimental data was compared with simulation data. The results verified the correctness of simulation data.
4. ADAMS/Optimization was adopted to optimize the power system of ACB. The rotational angular velocity of the moving contact head was as the objective function, design study and optimization of power system were completed. Closing angular velocity of optimized model increased by 15.6%. The model provided technical support in the production improvement and new production development, meanwhile, the arc was avoided.
The dynamics simulation and optimization of ACB system, which were based on experimental and simulation analysis data, provided theoretical and practical support in future production improvement. The actual work results of improved production showed that the research method not only could improve safety and reliability of ACB, but heightened service life.
Key words ACB, dynamics analysis, experimental verification, optimization
目 录
摘要 I
Abstract II
第1章 绪论 1
1.1 课题研究背景及意义 1
1.1.1 研究背景 1
1.1.2 研究意义 2
1.2 课题研究现状及发展趋势 3
1.2.1 研究现状 3
1.2.2 发展趋势 4
1.3 课题研究内容及章节安排 5
1.3.1 主要研究内容 5
1.3.2 章节安排 6
1.4 本章小结 7
第2章 多体系统动力学建模及求解 8
2.1 引言 8
2.2 多刚体系统动力学建模 8
2.3 多柔体系统动力学建模 10
2.3.1 柔性体标记点运动分析 10
2.3.2 外载荷 11
2.3.3 多柔体动力学方程 13
2.4 多体系统动力学方程求解 14
2.4.1 非线性代数方程组求解 14
2.4.2 微分代数方程组求解 14
2.5 接触碰撞问题求解 16
2.6 本章小结 20
第3章 断路器机构系统刚柔仿真分析 21
3.1 断路器机构系统工作原理 21
3.1.1 合闸过程 21
3.1.2 分闸过程 23
3.2 断路器机构系统动力学模型建立 24
3.2.1 断路器机构系统实体建模 24
3.2.2 虚拟样机模型建立 25
3.3 断路器机构系统多刚体仿真分析 26
3.3.1 装配分析 26
3.3.2 静平衡分析 27
3.3.3 运动学分析 27
3.3.4 动力学分析 32
3.4 断路器机构系统柔性仿真分析 37
3.4.1 划分有限元网格 37
3.4.2 生成MNF文件 38
3.4.3 柔性仿真分析 40
3.5 本章小结 43
第4..
低压断路器常被作为低压配电支路或终端的开关使用。长期以来传统低压断路器产品的设计研发是一个凭借经验的大循环过程,不仅难以提高产品质量,而且耗费大量的时间和金钱。
本课题针对CW1-3200型低压框架式断路器机构系统实际工作过程中存在机构运动死点、碰撞类型复杂以及燃弧现象严重等问题,在实验数据的基础上运用多体系统动力学仿真分析软件ADAMS研究该机构系统的动力学特性和碰撞问题,通过对断路器动力系统的优化分析得到满足条件的最优值模型。
本论文主要研究内容是:
1. 采用UG与ADAMS软件完成对CW1-3200型低压框架式断路器机构系统的实体造型与动力学模型建立。
2. 通过有限元软件Altair HyperMesh与ABAQUS完成有限元建模,计算输出ADAMS/Flex柔性分析所需的模态中性文件MNF (Modal Neutral File),运用ADAMS软件对断路器机构系统进行多刚体与柔性仿真分析,获得了断路器机构系统的运动特性。刚、柔性对比分析结果表明基于柔性的动力学特性分析更趋近于理论与实际。
3. 在测试方案确定的基础上运用高灵敏度传感器完成对断路器机构系统的实验研究,并对仿真与实验数据进行对比分析,运用实验测试验证了仿真分析结果的正确性。
4. 利用ADAMS软件的Optimization优化分析模块,以动触头转动角速度为优化目标函数,对动力系统进行设计研究和优化设计分析。优化后模型的动触头合闸平均角速度提高了15.6%,该模型可以为本产品的改进及新产品的研发提供技术支持,同时合闸速度的提高也可以更好的避免触头间的燃弧现象。
基于实验与分析数据对断路器机构系统的动态仿真分析与优化设计,为以后产品的改进提供理论和实践上的支持。基于优化分析的产品工作结果表明,该研究方法达到了提高产品安全性、可靠性以及使用寿命的目的。
关键词 断路器;动力学特性分析;实验验证;优化设计
Abstract
Low-voltage circuit breakers are often used as low-voltage power distribution branches or terminal switches. Traditional design and development process of low-voltage circuit breakers by virtue of experience is a big cycle. Not only it is difficult to improve production quality, but also a lot of time and money is spent.
The ACB system has dead bodies, complex collision types, and serious arc phenomenon during practical movement. To solve these problems, ADAMS software was used to calculate and analyze the dynamics characteristics and contact problems based on experimental data, and the optimum value model of meeting specified conditions was obtained by optimizing the power system.
The main contents of this thesis:
1. UG and ADAMS software were used to complete CW1-3200 Low Voltage ACB solid modeling and dynamics modeling.
2. Finite element model was established by Altair HyperMesh and ABAQUS software, and MNF (Modal Neutral File) was calculated and outputted, which was required by ADAMS/Flex. ACB system was rigid and flex simulated and analyzed by ADAMS software, and motion characteristics of body system were obtained. The results showed that dynamics simulation analysis based on flex bodies was more close to theory and reality.
3. The appropriate measurement methods and high sensitivity sensors were adopted to complete the experimental study of ACB, and experimental data was compared with simulation data. The results verified the correctness of simulation data.
4. ADAMS/Optimization was adopted to optimize the power system of ACB. The rotational angular velocity of the moving contact head was as the objective function, design study and optimization of power system were completed. Closing angular velocity of optimized model increased by 15.6%. The model provided technical support in the production improvement and new production development, meanwhile, the arc was avoided.
The dynamics simulation and optimization of ACB system, which were based on experimental and simulation analysis data, provided theoretical and practical support in future production improvement. The actual work results of improved production showed that the research method not only could improve safety and reliability of ACB, but heightened service life.
Key words ACB, dynamics analysis, experimental verification, optimization
目 录
摘要 I
Abstract II
第1章 绪论 1
1.1 课题研究背景及意义 1
1.1.1 研究背景 1
1.1.2 研究意义 2
1.2 课题研究现状及发展趋势 3
1.2.1 研究现状 3
1.2.2 发展趋势 4
1.3 课题研究内容及章节安排 5
1.3.1 主要研究内容 5
1.3.2 章节安排 6
1.4 本章小结 7
第2章 多体系统动力学建模及求解 8
2.1 引言 8
2.2 多刚体系统动力学建模 8
2.3 多柔体系统动力学建模 10
2.3.1 柔性体标记点运动分析 10
2.3.2 外载荷 11
2.3.3 多柔体动力学方程 13
2.4 多体系统动力学方程求解 14
2.4.1 非线性代数方程组求解 14
2.4.2 微分代数方程组求解 14
2.5 接触碰撞问题求解 16
2.6 本章小结 20
第3章 断路器机构系统刚柔仿真分析 21
3.1 断路器机构系统工作原理 21
3.1.1 合闸过程 21
3.1.2 分闸过程 23
3.2 断路器机构系统动力学模型建立 24
3.2.1 断路器机构系统实体建模 24
3.2.2 虚拟样机模型建立 25
3.3 断路器机构系统多刚体仿真分析 26
3.3.1 装配分析 26
3.3.2 静平衡分析 27
3.3.3 运动学分析 27
3.3.4 动力学分析 32
3.4 断路器机构系统柔性仿真分析 37
3.4.1 划分有限元网格 37
3.4.2 生成MNF文件 38
3.4.3 柔性仿真分析 40
3.5 本章小结 43
第4..