某舰炮转弹机非线性结构动力学.doc

约77页DOC格式手机打开展开

某舰炮转弹机非线性结构动力学,摘要随着现代海战的需要和科学技术的发展,对舰炮技术性能的要求也越来越高。转弹机作为舰炮供弹系统的重要组成部分,其性能直接决定着整个供弹系统的可靠性。本文针对某舰炮转弹机出现的振动及部件断裂问题,结合非线性有限元理论和结构动力学,运用abaqus软件对转弹机进行结构动力学仿真分析,并通过正交试验设计方法对转弹机主要部件进...
编号:20-208897大小:11.76M
分类: 论文>机械工业论文

内容介绍

此文档由会员 违规屏蔽12 发布


摘 要
随着现代海战的需要和科学技术的发展,对舰炮技术性能的要求也越来越高。转弹机作为舰炮供弹系统的重要组成部分,其性能直接决定着整个供弹系统的可靠性。本文针对某舰炮转弹机出现的振动及部件断裂问题,结合非线性有限元理论和结构动力学,运用ABAQUS软件对转弹机进行结构动力学仿真分析,并通过正交试验设计方法对转弹机主要部件进行结构优化。
文中主要就以下内容进行研究:
1) 运用PRO/E软件和有限元前处理软件HyperMesh分别建立了转弹机的三维实体模型与有限元模型,利用ABAQUS软件分析了转弹机的运动状态和关键部件的结构强度,揭示了摇臂的应力集中非常严重,并结合应力测试实验验证了其有限元模型的合理性和方法的正确性。
2) 针对物理样机试验中出现的振动问题,对转弹机关键部件建立合理模型,并进行模态分析,研究其固有特性,确定了结构的薄弱部位。结合非线性结构动力学模型,研究了主要部件连接处的位移响应。通过对模态和位移响应的研究,得出三大部件均出现了不同程度的振动。
3) 结合正交试验设计方法对转弹机主要部件进行了结构优化,通过对优化前后主要部件动态特性和动态强度的对比分析,评估了结构优化的可行性。
本文对舰炮转弹机进行了结构动力学仿真、分析了主要部件的固有属性且检验了转弹机的可靠性(结构强度、位移响应等)。在动力学仿真分析的基础上,结合正交试验设计优化方法改进主要部件的结构,改善了系统的动态特性,提高了主要部件的刚度和强度,为舰炮转弹机结构改进提出一种方法,同时也为提高舰炮技术性能提供参考依据。

关键词 转弹机 显式算法 正交试验设计 结构优化 有限元分析
Abstract
As the needs of modern naval warfare and the development of science and technology, naval guns have to continuously improve the technical performance. The Driver is an important part of the gun feeding system, its reliability could ensure the reliability of the gun feeding system. For vibration and broken of parts, this thesis focuses on nonlinear structural dynamics analysis of The Driver by ABAQUS, optimize structure of main parts for the driver by based on Orthogonal Experimental Design.
Main work in the thesis is as follows:
1) 3D model is built by PRO/E, then mesh model is built by HyperMesh, and at last, reasonable simplified nonlinear finite element model of The Driver is built by ABAQUS.It is studied in order to know state of motion and check the structural strength of main parts. Stress results show that stress concentration of the ranging arm is very severe. At the same time, stress testing experiment was done to verify correctness of the simplified model.
2) For physical prototype test problems that vibration of The Driver occur, reasonable finite element models of primary parts are built,its mode is studied in order to realize the inherent characteristic, find out the weak part of The Driver. On the basis of nonlinear structural dynamics model, displacement response of main parts is studied. With studying mode and displacement response, the results show that vibration of The Driver has occurred.
3) The paper combines orthogonal experimental design to optimize structure of main parts, contrasts dynamic characteristics and dynamic strength of main components before and after the optimization, assesses the feasibility of structural improvements.
This thesis focuses on nonlinear structural dynamics analysis of The Driver for a certain type of naval gun with nonlinear finite element method and structural dynamics theory, in order to realize the inherent characteristic and verify its reliability such as the intensity, displacement response and so on. On the basis of the dynamic simulation analysis, taking orthogonal design optimize structure of main parts so as to improve the dynamic property of The Driver, increase the structural stiffness and strength,propose a method for structure optimization of The Driver, and provide a reference for improving technical performance of naval gun.
Keywords The Driver, Explicit Algorithm, Orthogonal Experimental Design, Structural Optimization, Finite Element Analysis


目 录
摘 要 I
Abstract III
第1章 绪论 1
1.1 选题背景和意义 1
1.2 国内外研究现状 2
1.2.1非线性有限元法 2
1.2.2结构动力学 3
1.2.3火炮动力学 3
1.2.4试验设计方法 4
1.3 本文研究的主要内容和章节安排 6
1.3.1 主要研究内容 6
1.3.2 章节安排 6
1.4本章小结 7
第2章 非线性结构动力学分析理论和方法 8
2.1 概述 8
2.2 有限元法的基本理论 9
2.2.1有限元的基本思想 9
2.2.2有限元的基本过程 9
2.3 非线性结构动力学有限元方程组的解法 10
2.3.1 概述 10
2.3.2直接积分法 11
2.3.3振型叠加法 15
2.4 接触理论 16
2.4.1 摩擦模型 16
2.4.2 接触算法 17
2.5 本章小结 19
第3章 转弹机有限元模型的建立 20
3.1 概述 20
3.2 转弹机的工作原理 20
3.3 转弹机的有限元模型 21
3.3.1单元选择和网格划分 22
3.3.2材料属性 24
3.3.3 ABAQUS中Interaction模块 24
3.3.4边界条件和载荷 27
3.3.5分析类型 28
3.4 本章小结 28
第4章 转弹机非线性结构动力学分析 29
4.1 概述 29
4.2 转弹机不同时刻运动状态分析 29
4.3 转弹机关键部件的模态分析 30
4.4 转弹机关键部件应力分布分析 32
4.5 转弹机动态响应分析 38
4.5.1影响转弹机系统动力特性的因素 38
4.5.2位移响应分析 39
4..