基于napa的载船浮箱安全.doc
约89页DOC格式手机打开展开
基于napa的载船浮箱安全,摘要船舶下水方式有很多种,从下水设施上可分为船台下水、船坞下水和浮箱下水三种。浮箱承载下水船舶时,下水船对浮箱的作用力通过支墩传递,下水船、支墩、浮箱以及海水组成一个相互约束的系统,如果某一支墩受力过大,很容易产生该区域变形过大,危及浮箱结构的安全,浮箱载船下水是否安全必须通过一系列计算才能得知。支墩力计算是整个浮箱载...
内容介绍
此文档由会员 违规屏蔽12 发布
摘 要
船舶下水方式有很多种,从下水设施上可分为船台下水、船坞下水和浮箱下水三种。
浮箱承载下水船舶时,下水船对浮箱的作用力通过支墩传递,下水船、支墩、浮箱以及海水组成一个相互约束的系统,如果某一支墩受力过大,很容易产生该区域变形过大,危及浮箱结构的安全,浮箱载船下水是否安全必须通过一系列计算才能得知。
支墩力计算是整个浮箱载船系统计算的一个关键环节,传统墩反力的计算方法很多,但多少存在一些不足之处。难以保证计算结果的准确性。
通过对整个浮箱载船系统进行全面分析,考虑到下水船的不确定性以及支墩布置方案的不确定性等因素的影响,将整个系统简化成为一维理论计算模型,将下水船用一维变截面梁模拟,支墩用单向压缩弹簧模拟,浮箱用一维等截面梁模拟,基于矩阵位移法,以船舶设计软件NAPA为平台,并采用NAPA BASIC语言编写相应模块开发一套完整的支墩力和浮态参数化计算程序,实现支墩力和浮态计算的参数化计算。主要包括:1)已知条件输入模块;2)单元固端剪力、弯矩计算模块;3)整体刚度矩阵形成模块;4)弹性支座处理模块;5)高斯消元法求解模块;6)下水船、浮箱挠度计算模块;7) 支墩力计算模块;8) 浮态、稳性计算模块;9)输出模块,这几个模块组成,然后建立考虑挠度的浮箱参数化几何模型,加载支墩力,利用NAPA里面的功能模块进行浮箱静水力计算,快速生成剪力、弯矩曲线等。
同时,还以某散货船作为验证实例,同时查阅中华人民共和国法定规范,将计算结果中的主要数据与规范要求进行对比,校核是否满足要求,从而快速、较准确的检验整个浮箱载船系统是否安全、可靠,建立一套完整的浮箱载船安全评估系统。
关键词: NAPA; 矩阵位移法; 参数化; 支墩力; 浮箱
Abstract
There are many ship launching methods, it can be divided into three types: berth launching, dock launching and pontoon launching according to launching facility,.
The force of pontoon from launching ship is transmitted by blocks. launching ship, blocks, pontoon and sea water consist of a mutual constraint system.if the reaction force of one block is too great, it’s easy the deformation of this region is beyond limits, the safety of pontoon structure is in risk, whether the process of pontoon during ship launching is safe must through a series of calculation could we known.
The calculation of blocks’ reaction force is a key link in the pontoon system calculation. There are a great many traditional calculation methods, but more or less exist
there lilitations, difficult to guarantee accuracy.
Through comprehensively analyze the entire pontoon system, consider the effects of all factors such as the launching ship is uncertain, the block's layout scheme is uncertain, etc..Simplify the whole system as one-dimension theoretical computational model, simulate launching ship as non-uniform beam,blocks as uniaxial compression spring and pontoon as uniform beam, use ship design software NAPA as platform, exploit a set of integral block's reaction force and floating condition parametric calculating program with NAPA BASIC language, achieve parametric calculation of block's reaction force and floating condition. Mainly consist of: 1) element fixed-end shearing force and bending moment calculation module; 2) known conditions input module; 3) assembled stiffness matrix formation module; 4) Elastic support disposal module; 5) Gaussian elimination method solution module; 6) deflection calculation module of launching ship and pontoon; 7) blocks’reaction force calculation module; 8) floating condition and stability calculation module; 9) output module. Then establish pontoon parametric geometric model considering deflection, load the reaction force, make full use of the inner functional module to conduct pontoon hydrostatics calculation, to form shearing force and bending moment curve quickly etc..
At the same time, use one bulk carrier as case verification, then refer to the mandatory rule of the people's Republic of China, compare the main date in the calculating result with standard requirement, check whether meet requirement, there by test whether the entire pontoon system is safe and reliable, establish a set of integral safety assessment system of pontoon during ship launching.
KEY WORDS: NAPA; matrix displacement method; parametric;
Blocks’ reaction force; Pontoon
目 录
摘 要 Ⅰ
Abstract Ⅱ
第一章 绪 论 1
1.1 选题的理论意义和实用价值 2
1.2 本课题国内、外研究现状与发展趋势 2
1.2.1 船舶安全性及评估系统的研究 2
1.2.2 船体梁总纵强度研究现状 3
1.2.3 国内外相关理论研究现状 4
1.2.4 梁挠度求解方法研究现状 5
1.3 研究内容与研究方法及创新点 6
1.3.1 研究内容 6
1.3.2 研究方法 7
1.3.3 创新点 7
1.4 本章小结 7
第二章 矩阵位移法 7
2.1 杆件与荷载的分类 8
2.2 坐标系杆端力与杆端位移的确定 9
2.3 单元刚度矩阵 10
2.3.1 梁单元刚度矩阵推导 10
2.3.2 单元刚度矩阵的性质 13
2.4 整体刚度矩阵 13
2.4.1 整体刚度矩阵的形成 13
2.4.2 整体刚度矩阵的性质 13
2.5 本章小结 14
第三章 浮箱载船系统理论分析 15
3.1 浮箱载船下水工艺流程 15
3.2 建立理论计算模型 15
3.3 系统理论计算分析 16
3.3.1 弹性接触..
船舶下水方式有很多种,从下水设施上可分为船台下水、船坞下水和浮箱下水三种。
浮箱承载下水船舶时,下水船对浮箱的作用力通过支墩传递,下水船、支墩、浮箱以及海水组成一个相互约束的系统,如果某一支墩受力过大,很容易产生该区域变形过大,危及浮箱结构的安全,浮箱载船下水是否安全必须通过一系列计算才能得知。
支墩力计算是整个浮箱载船系统计算的一个关键环节,传统墩反力的计算方法很多,但多少存在一些不足之处。难以保证计算结果的准确性。
通过对整个浮箱载船系统进行全面分析,考虑到下水船的不确定性以及支墩布置方案的不确定性等因素的影响,将整个系统简化成为一维理论计算模型,将下水船用一维变截面梁模拟,支墩用单向压缩弹簧模拟,浮箱用一维等截面梁模拟,基于矩阵位移法,以船舶设计软件NAPA为平台,并采用NAPA BASIC语言编写相应模块开发一套完整的支墩力和浮态参数化计算程序,实现支墩力和浮态计算的参数化计算。主要包括:1)已知条件输入模块;2)单元固端剪力、弯矩计算模块;3)整体刚度矩阵形成模块;4)弹性支座处理模块;5)高斯消元法求解模块;6)下水船、浮箱挠度计算模块;7) 支墩力计算模块;8) 浮态、稳性计算模块;9)输出模块,这几个模块组成,然后建立考虑挠度的浮箱参数化几何模型,加载支墩力,利用NAPA里面的功能模块进行浮箱静水力计算,快速生成剪力、弯矩曲线等。
同时,还以某散货船作为验证实例,同时查阅中华人民共和国法定规范,将计算结果中的主要数据与规范要求进行对比,校核是否满足要求,从而快速、较准确的检验整个浮箱载船系统是否安全、可靠,建立一套完整的浮箱载船安全评估系统。
关键词: NAPA; 矩阵位移法; 参数化; 支墩力; 浮箱
Abstract
There are many ship launching methods, it can be divided into three types: berth launching, dock launching and pontoon launching according to launching facility,.
The force of pontoon from launching ship is transmitted by blocks. launching ship, blocks, pontoon and sea water consist of a mutual constraint system.if the reaction force of one block is too great, it’s easy the deformation of this region is beyond limits, the safety of pontoon structure is in risk, whether the process of pontoon during ship launching is safe must through a series of calculation could we known.
The calculation of blocks’ reaction force is a key link in the pontoon system calculation. There are a great many traditional calculation methods, but more or less exist
there lilitations, difficult to guarantee accuracy.
Through comprehensively analyze the entire pontoon system, consider the effects of all factors such as the launching ship is uncertain, the block's layout scheme is uncertain, etc..Simplify the whole system as one-dimension theoretical computational model, simulate launching ship as non-uniform beam,blocks as uniaxial compression spring and pontoon as uniform beam, use ship design software NAPA as platform, exploit a set of integral block's reaction force and floating condition parametric calculating program with NAPA BASIC language, achieve parametric calculation of block's reaction force and floating condition. Mainly consist of: 1) element fixed-end shearing force and bending moment calculation module; 2) known conditions input module; 3) assembled stiffness matrix formation module; 4) Elastic support disposal module; 5) Gaussian elimination method solution module; 6) deflection calculation module of launching ship and pontoon; 7) blocks’reaction force calculation module; 8) floating condition and stability calculation module; 9) output module. Then establish pontoon parametric geometric model considering deflection, load the reaction force, make full use of the inner functional module to conduct pontoon hydrostatics calculation, to form shearing force and bending moment curve quickly etc..
At the same time, use one bulk carrier as case verification, then refer to the mandatory rule of the people's Republic of China, compare the main date in the calculating result with standard requirement, check whether meet requirement, there by test whether the entire pontoon system is safe and reliable, establish a set of integral safety assessment system of pontoon during ship launching.
KEY WORDS: NAPA; matrix displacement method; parametric;
Blocks’ reaction force; Pontoon
目 录
摘 要 Ⅰ
Abstract Ⅱ
第一章 绪 论 1
1.1 选题的理论意义和实用价值 2
1.2 本课题国内、外研究现状与发展趋势 2
1.2.1 船舶安全性及评估系统的研究 2
1.2.2 船体梁总纵强度研究现状 3
1.2.3 国内外相关理论研究现状 4
1.2.4 梁挠度求解方法研究现状 5
1.3 研究内容与研究方法及创新点 6
1.3.1 研究内容 6
1.3.2 研究方法 7
1.3.3 创新点 7
1.4 本章小结 7
第二章 矩阵位移法 7
2.1 杆件与荷载的分类 8
2.2 坐标系杆端力与杆端位移的确定 9
2.3 单元刚度矩阵 10
2.3.1 梁单元刚度矩阵推导 10
2.3.2 单元刚度矩阵的性质 13
2.4 整体刚度矩阵 13
2.4.1 整体刚度矩阵的形成 13
2.4.2 整体刚度矩阵的性质 13
2.5 本章小结 14
第三章 浮箱载船系统理论分析 15
3.1 浮箱载船下水工艺流程 15
3.2 建立理论计算模型 15
3.3 系统理论计算分析 16
3.3.1 弹性接触..