基于最佳侧移刚度分布的多高层钢.doc

约81页DOC格式手机打开展开

基于最佳侧移刚度分布的多高层钢,摘要结构的抗震设计应全面注重结构的性能、安全及经济等诸多方面。而传统的结构设计方法往往偏于保守和安全,材料性能没有得到充分的发挥。本文研究的目的就是在保证结构抗震性能的前提下,降低建造的费用,提高设计质量和水平。本文从能量的角度,通过优化布置结构侧移刚度研究结构构件截面分布规律,避免结构损伤集中,从而使结构达到最佳的抗...
编号:20-209134大小:17.91M
分类: 论文>机械工业论文

内容介绍

此文档由会员 违规屏蔽12 发布

摘 要
结构的抗震设计应全面注重结构的性能、安全及经济等诸多方面。而传统的结构设计方法往往偏于保守和安全,材料性能没有得到充分的发挥。本文研究的目的就是在保证结构抗震性能的前提下,降低建造的费用,提高设计质量和水平。
本文从能量的角度,通过优化布置结构侧移刚度研究结构构件截面分布规律,避免结构损伤集中,从而使结构达到最佳的抗震性能。目前国内外关于这方面的研究还非常少。
地震响应分析是结构抗震性能分析与设计的基础。目前,时程分析法对于重要建筑物的抗震分析已成为一种重要方法。我国现行《建筑抗震设计规范(GB50011-2001)》规定,时程分析法用于结构在地震作用下的破坏机理和改进抗震设计方法的研究。另外,推覆分析法和日本著名学者秋山宏提出的基于能量平衡的设计法也是获得必要地震响应值的有效方法。
基于上述背景,本文采用时程分析法结合SAP2000有限元分析软件,研究多高层钢框架结构的最佳侧移刚度和最佳截面惯性矩的分布规律,提出设计方法。并利用推覆分析法和能量预测法验算结果的合理性。
首先,建立多高层钢框架算例模型,以罕遇地震作用下结构各层累计塑性变形倍率相等为目标,利用地震响应弹塑性时程方法研究结构模型最佳侧移刚度和最佳截面惯性矩的分布规律,提出多高层钢结构的最佳侧移刚度和最佳截面惯性矩的分布式。
其次,建立不同侧移刚度分布的算例模型,对本文所揭示的最佳侧移刚度和截面惯性矩分布规律进行验证,提出基于最佳侧移刚度分布的多高层钢框架结构的抗震设计方法。
最后,以12层设计模型为例,利用推覆分析法和基于能量平衡的设计方法计算设计算例的地震响应值并进行分析比较,考察本文提出的抗震设计方法的可靠性以及在罕遇地震作用下结构的地震响应。

关键词 抗震设计;最佳侧移刚度分布;弹塑性时程分析;推覆分析法;能量预测法

ABSTRACT
Seismic design should full focus on structural performance,security,economy and so on. But traditional seismic design usually biased in favor of conservative and security, material properties will not been fully exploited. The purpose of this study is in ensuring the seismic performance of the premise, reduce the cost of construction, Improve the quality and level of design method.
In order to achieve the best seismic performance of structures,this article studies the sections’ distribution of structural members to avoid the concentration of structural damage by arranging structural stiffness optimal from the perspective of energy. Research in this regard at home and abroad is still very small at present.
Seismic performance analysis and design based on the earthquake response of the structures. The time history analysis method has become an important method for seismic analysis of important buildings at present. It is showed in Code for seismic design of buildings that the time history analysis method is used for research on structural damage mechanism under the earthquake and to improve seismic design method. In addtion, pushover analysis procedure and energy method proposed by Akiyama are also effective methods to obtain the necessary earthquake response of the structures.
Based on above background, this paper uses the time history analysis method and SAP2000 to study optimum lateral stiffness distribution and optimum moment of inertia ratio of steel structures, at the same time, a new design method is proposed. Besides, pushover analysis procedure and energy method are used to validate the goodness of the new design method.
Firstly, multi-storey steel structures are designed. In order to make the cumulative plastic deformation ratio of each storey equivalent under rare earthquake, time history analysis method is used to study the optimum lateral stiffness distribution and the optimum moment of inertia of steel structures. At the same time, formulas of the optimum lateral stiffness distribution and the optimum moment of inertia of steel structures distribution are proposed.
Secondly, different kinds of lateral stiffness distribution models are designed to vertify the rightness of the optimum distribution of lateral stiffness and the optimum moment of inertia. Based on the optimum distribution of stiffness and the optimum moment of inertia, a new design method of multi-storey steel structures based on the optimum lateral stiffness distribution is proposed.
At last, In order to validate the goodness of the new design method, 12-storey models are designed, pushover analysis procedure and energy method are used to study the earthquake response of the structures.

Keywords seismic design; optimum lateral stiffness distribution; time-history analysis; pushover analysis procedure; energy method

目 录
摘 要 I
ABSTRACT III
第1章 绪 论 1
1.1 引言 1
1.2 结构抗震设计课题的国内外研究现状 1
1.2.1 结构抗震设计思想发展 2
1.2.2 多高层建筑结构地震作用计算方法 2
1.3 大型有限元软件SAP2000简介 3
1.4 本文的研究目的和意义以及主要工作内容 4
第2章 推覆分析法 6
2.1 推覆分析法基本思路 6
2.2 推覆分析法基本过程 7
2.2.1 损伤极限强度的验证 7
2.2.2 安全极限强度的验证 10
2.2.3 罕遇地震时结构真实响应值的计算 11
2.3 本章小结 13
第3章 能量预测法 14
3.1 能量平衡的基本方程 14
3.2 设计用能量谱 15
3.3 抗震结构的地震反应预测式 18-br..