海洋立管涡激振动.rar

RAR格式版权申诉手机打开展开

海洋立管涡激振动,摘要本论文跟踪了国内外有关圆柱体及问题的最新研究动向,对本领域内的研究方法和进展进行了综述和分析。以深海立管为研究对象,介绍了涡激振动的有关理论、数值模拟方法和实验方法,对均匀流中圆柱体的涡激振动进行数值模拟,探索了动波壁方法对圆柱体涡激振动的抑制作用,对深海柔性立管在不同均匀来流速度下的横向位移响应进...
编号:20-209143大小:18.38M
分类: 论文>机械工业论文

该文档为压缩文件,包含的文件列表如下:

内容介绍

原文档由会员 违规屏蔽12 发布

摘 要
本论文跟踪了国内外有关圆柱体及海洋立管涡激振动问题的最新研究动向,对本领域内的研究方法和进展进行了综述和分析。以深海立管为研究对象,介绍了涡激振动的有关理论、数值模拟方法和实验方法,对均匀流中圆柱体的涡激振动进行数值模拟,探索了动波壁方法对圆柱体涡激振动的抑制作用,对深海柔性立管在不同均匀来流速度下的横向位移响应进行了时域计算,分析了立管的模态激发过程,并将动波壁方法应用于柔性立管的涡激振动抑制研究工作。论文的具体工作和主要研究成果如下:
1) 较为全面地回顾和分析了国内外研究海洋立管涡激振动问题的动态和进展,系统介绍了涡激振动问题研究过程中所涉及的流体相关参数、结构物相关参数和耦合运动相关参数等;
2) 针对平面内两自由度弹性支撑圆柱体的涡激振动建立了圆柱体的力学模型,介绍了流场的数值求解方法和圆柱体的动力响应求解方法等,并对圆柱体与流场的耦合求解过程用流程图进行了描述。
3) 采用动波壁技术对圆柱体的涡激振动进行抑制效果研究,发现圆柱尾涡的发放与壁面波动方向相关,圆柱涡激振动位移响应受壁面波动频率影响,雷诺数固定不同约化速度弹性支撑圆柱的横向位移在适当的壁面波动频率下均能降低到0.05D以下,涡激振动抑制效果显著,壁面波动能够消除圆柱尾部流场的涡街,并使流场内涡量影响区域集中在纵向对称线附近较窄区域。
4) 详细介绍了海洋立管时域内动力响应的有限元方法并对 方法编制了C语言程序,对其计算的精确性采用算例进行了验证。
5) 采用切片法对海洋立管因涡激振动而产生的柔性变形进行数值计算,分析了立管在均匀来流下的模态演化过程,考察了通过表面覆盖动波壁的方法控制细长立管的涡激振动,发现动波壁的设置能够极大限度地降低立管的横向位移响应,动波壁的覆盖率和覆盖方式对立管的横向位移响应产生明显影响。
关键词:切片法;动波壁;涡激振动;柔性立管


Abstract
In this paper, the state of the art of study on the vortex-induced vibration of pipe riser is summarized. Research methods and progress used in VIV analysis are introduced. Empirical theory total with numerical simulation methods and experimental methods about VIV is introduced in this paper. Vortex-induced vibration phenomenon of cylinder which is placed in a uniform flow is simulated by software FLUENT, explorative study about the inhibitory effect of VIV for the use of wavy wall on the right half surface of cylinder which is free in XY plane is made, transverse displacement response of deep-sea flexible pipe riser with different in-flow speed is calculated in time domain, the modal stimulation process of pipe riser is analyzed, and wavy wall is used on deep-sea flexible pipe riser to suppress the VIV. The main work and important conclusions of this paper are listed as follows:
1) A comprehensive review and analysis about the advance of VIV research at home and abroad is performed. Correlation parameters of fluid, structure and coupling movement of fluid and structure involved in the study of VIV are systematically introduced.
2) Mechanical modal of cylinder which is elastic supported within XY plane and free in X and Y directions is established. Methods used to calculate flow field and the dynamic response are introduced. Coupling process of VIV of the cylinder is described by flowcharts.
3) Study about the inhibitory effect of VIV for the use of wavy wall on the right half surface of cylinder, it’s found that tail vortex of cylinder is related with the wall fluctuated direction, the displacement response of cylinder is influenced by the frequency of wall fluctuation, and it can be reduced down to 0.05D for cylinder with different reduced velocities, the wavy wall could be used to eliminate vortex in tail flow field, and vortex amassed in the narrow area that near symmetry line of X direction flow field.
4) The finite element method used for the solution of dynamic response of deep-sea pipe riser is introduced. A code for method is programed using C language and is verified the calculation accuracy by numerical example.
5) The flexible deformation of pipe riser caused by VIV is simulated with the method of strip technique. The process of modal evolution of pipe riser in the uniform current is analyzed . The results show that transverse displacement response of riser with wavy wall is greatly minimized and the coverage rate and arrangement of wavy wall have a great influence on the displacement response of riser.
Key word: strip technique; wavy wall cylinder; VIV; flexible riser


目 录
摘要 I
ABSTRACT II
第1章 绪论 1
1.1 研究背景及意义 1
1.2 海洋立管涡激振动研究现状 1
1.2.1 涡激振动的概念 1
1.2.2 涡激振动研究现状 2
1.3 涡激振动抑制方法研究现状 6
1.4 论文的主要工作及创新点 8
1.4.1 论文的主要工作 8
1.4.2 论文的主要创新点 9
第2章 涡激振动基本知识 10
2.1 旋涡的形成与发放机理 10
2.2 涡激振动相关参数 11
2.2.1 流体相关基本参数 12
2.2.2 结构物相关参数 14
2.2.3 其他重要参数 15
2.3 本章小结 16
第3章 二维弹性支撑圆柱涡激振动数值计算方法 17
3.1 圆柱体力学模型的建立 17
3.2 流场数值求解 18
3.3 动力学方程的求解 19
3.4 计算流程 20
3.5 本章小结 20
第4章 主动控制措施对圆柱涡激振动的作用 22
4.1 数值计算模型 22
4.1.1 计算流体力学控制方程 22
4.1.2 结构动力学..