基于napa的新型高速船船体型线.doc
约77页DOC格式手机打开展开
基于napa的新型高速船船体型线,基于napa的新型高速船船体型线及其参数化设计研究大摘要对于高速船而言,由于航速的变化,其航态会因此发生改变,通过体积傅汝德数来表示高速船的相对速度,当体积傅氏数位于1.0至3.0之间时,船舶的浮态与静浮时有一定的变化,船首上浮,船尾下沉,具有一定程度的尾倾,船舶的浮力由排水体积产生的浮力与流体产生的升力组成。此时,尽...
内容介绍
此文档由会员 违规屏蔽12 发布
基于NAPA的新型高速船船体型线及其参数化设计研究大摘要
对于高速船而言,由于航速的变化,其航态会因此发生改变,通过体积傅汝德数来表示高速船的相对速度,当体积傅氏数位于1.0至3.0之间时,船舶的浮态与静浮时有一定的变化,船首上浮,船尾下沉,具有一定程度的尾倾,船舶的浮力由排水体积产生的浮力与流体产生的升力组成。此时,尽管流体动力对浮力有一定的影响,但航态基本上仍处于排水型状态,这类高速船称为高速排水型船或过渡型高速船。
高速排水型船的船长傅汝德数通常集中在0.3至0.7之间,在此速度段中,圆舭船型具有良好的阻力性能,成为设计时的首选船型。然而,圆舭船型的横摇性能较差,会对耐波性及舒适性带来不利的影响;与此同时,折角船型(又称V型船型或尖舭船型)在此速度段中的阻力性能略逊于圆舭船型,但折角船型的V型剖面直线斜升,与舷侧板在舭部形成一个折角,一定程度上增加了横摇阻尼,耐波性能优于同尺度的圆舭船型。
综合圆舭船型与折角船型各自的优点,考虑设计一种圆舭折角船型,这种船型的前体与圆舭船型类似,后体则具有类似折角船型一样的折角型线,希望通过这样的结合,使得在具有相同主尺度和相近浮心纵向位置的情况下,圆舭折角船型具有类似圆舭船型一样良好的阻力性能,而横摇性能则要比圆舭船型有所改善,成为阻力性能和横摇性能俱佳的船型之一。
型线设计是船型设计中的一个重要的环节,传统的型线设计方法是参照优秀的母型船型线或系列型线,经过一定的变换和修改得到待设计船的型线。然而,一旦船型的某些设计要素有所改变,往往就需要重新设计型线,需要耗费大量的时间和精力。参数化设计的理念是将某些船型要素和特征用参数的形式表达,使得船舶型线具有可视化、易生成和易修改的特点。
本文对圆舭船型和折角船型的船体型线及船体几何形状特征做了分析,在此基础上,对圆舭折角船型的船体几何形状进行了描述,经过分析和筛选,将型线设计参数确定为27个。
本文以船舶设计软件NAPA为开发平台,结合典型的参数化设计理念,归纳出圆舭折角船型型线的参数化设计方法,通过相关的数学表达式连接设计参数,以NAPA Basic语言为工具开发编制了圆舭折角船型的参数化设计宏程序,整个船体形状可由设计参数进行驱动,在此基础上,进一步设计出具有相同主尺度及型排水体积、浮心纵向位置相近、折角型线长度与横向底升角不同的系列船型,通过对上述船型的生成,验证了该程序具有较强的灵活性和实用性。
型线设计完成后,需要对船型的性能进行计算和评估,在现有的阻力计算图谱和相关的回归公式中,其查询的依据和表达式大多与主尺度、尺度比和船型系数有关,在主尺度等指标相同的情况下,阻力计算图谱和相关的回归公式不能较好的反映船型变化对阻力的影响及程度。随着数值仿真软件的不断完善和进步,利用软件对船舶进行和阻力计算和运动数值仿真模拟已成为可能,其可靠性和准确程度已经得到了一定程度的认可。
本文针对参数化宏程序生成的模型,利用Fluent软件对其阻力性能进行了计算分析,利用Maxsurf软件对其横摇性能进行了研究;通过综合分析和比较,不仅验证了圆舭折角船型的综合性能要优于同尺度的圆舭船型,而且当全船分为10站,折角型线长度在1.5站左右时,圆舭折角船型可以取得较好的综合性能,同时为圆舭折角高速船性能的进一步评估提供了借鉴。
关键词 圆舭折角;型线;参数化设计;NAPA;阻力;横摇
Abstract
Because of the change of the speed, the sailing condition of the high speed craft may change, it can be divided by the Froude number based on volume, when the Froude number between 1.0 and 3.0, the bow of the craft may rise and the aft may fill down, the buoyancy of the craft equals to the sum of volume of displacement and fluid lift force. At this moment, although lift force may affect the buoyancy, the sailing is still in the condition of displacement, crafts at this condition are named displacement crafts or transition crafts.
The Froude numbers based on length of displacement crafts are concentrated in the region between 0.3 and 0.7, at this speed region, round bilge craft has perfectly resistance performance and become the first consideration among other craft configurations. However, the rolling performance of round craft may not good and may has negative effect to seakeeping performance and comfortable. Meanwhile, knuckle bilge craft (also named V-craft) has V cross sections and enhance the rolling damping, the seakeeping performance is better than round bilge craft and resistance performance is briefly worse than round bilge craft.
According to the advantages of the two crafts, a new high speed craft named round & knuckle craft can be designed, the front hull of the craft may identical to round craft and rear hull may identical to knuckle craft. It hopes that in the same dimensions and similar position of longitudinal center of buoyancy, this craft’s resistance performance is as well as round craft and rolling performance is as well as knuckle craft.
Hull lines design is a crucial step in craft design, the traditional method of hull lines design is obeying to the excellence model crafts and series crafts, after changing their dimensions and other factors, new hull lines can be obtained. However, while the design factors have to be change, the hull lines need to be crated again, and this method have to spend so much time and energy. Parametric design can solve this problem, this method use some design parameters to express the hull lines, and hull lines can be visible..
对于高速船而言,由于航速的变化,其航态会因此发生改变,通过体积傅汝德数来表示高速船的相对速度,当体积傅氏数位于1.0至3.0之间时,船舶的浮态与静浮时有一定的变化,船首上浮,船尾下沉,具有一定程度的尾倾,船舶的浮力由排水体积产生的浮力与流体产生的升力组成。此时,尽管流体动力对浮力有一定的影响,但航态基本上仍处于排水型状态,这类高速船称为高速排水型船或过渡型高速船。
高速排水型船的船长傅汝德数通常集中在0.3至0.7之间,在此速度段中,圆舭船型具有良好的阻力性能,成为设计时的首选船型。然而,圆舭船型的横摇性能较差,会对耐波性及舒适性带来不利的影响;与此同时,折角船型(又称V型船型或尖舭船型)在此速度段中的阻力性能略逊于圆舭船型,但折角船型的V型剖面直线斜升,与舷侧板在舭部形成一个折角,一定程度上增加了横摇阻尼,耐波性能优于同尺度的圆舭船型。
综合圆舭船型与折角船型各自的优点,考虑设计一种圆舭折角船型,这种船型的前体与圆舭船型类似,后体则具有类似折角船型一样的折角型线,希望通过这样的结合,使得在具有相同主尺度和相近浮心纵向位置的情况下,圆舭折角船型具有类似圆舭船型一样良好的阻力性能,而横摇性能则要比圆舭船型有所改善,成为阻力性能和横摇性能俱佳的船型之一。
型线设计是船型设计中的一个重要的环节,传统的型线设计方法是参照优秀的母型船型线或系列型线,经过一定的变换和修改得到待设计船的型线。然而,一旦船型的某些设计要素有所改变,往往就需要重新设计型线,需要耗费大量的时间和精力。参数化设计的理念是将某些船型要素和特征用参数的形式表达,使得船舶型线具有可视化、易生成和易修改的特点。
本文对圆舭船型和折角船型的船体型线及船体几何形状特征做了分析,在此基础上,对圆舭折角船型的船体几何形状进行了描述,经过分析和筛选,将型线设计参数确定为27个。
本文以船舶设计软件NAPA为开发平台,结合典型的参数化设计理念,归纳出圆舭折角船型型线的参数化设计方法,通过相关的数学表达式连接设计参数,以NAPA Basic语言为工具开发编制了圆舭折角船型的参数化设计宏程序,整个船体形状可由设计参数进行驱动,在此基础上,进一步设计出具有相同主尺度及型排水体积、浮心纵向位置相近、折角型线长度与横向底升角不同的系列船型,通过对上述船型的生成,验证了该程序具有较强的灵活性和实用性。
型线设计完成后,需要对船型的性能进行计算和评估,在现有的阻力计算图谱和相关的回归公式中,其查询的依据和表达式大多与主尺度、尺度比和船型系数有关,在主尺度等指标相同的情况下,阻力计算图谱和相关的回归公式不能较好的反映船型变化对阻力的影响及程度。随着数值仿真软件的不断完善和进步,利用软件对船舶进行和阻力计算和运动数值仿真模拟已成为可能,其可靠性和准确程度已经得到了一定程度的认可。
本文针对参数化宏程序生成的模型,利用Fluent软件对其阻力性能进行了计算分析,利用Maxsurf软件对其横摇性能进行了研究;通过综合分析和比较,不仅验证了圆舭折角船型的综合性能要优于同尺度的圆舭船型,而且当全船分为10站,折角型线长度在1.5站左右时,圆舭折角船型可以取得较好的综合性能,同时为圆舭折角高速船性能的进一步评估提供了借鉴。
关键词 圆舭折角;型线;参数化设计;NAPA;阻力;横摇
Abstract
Because of the change of the speed, the sailing condition of the high speed craft may change, it can be divided by the Froude number based on volume, when the Froude number between 1.0 and 3.0, the bow of the craft may rise and the aft may fill down, the buoyancy of the craft equals to the sum of volume of displacement and fluid lift force. At this moment, although lift force may affect the buoyancy, the sailing is still in the condition of displacement, crafts at this condition are named displacement crafts or transition crafts.
The Froude numbers based on length of displacement crafts are concentrated in the region between 0.3 and 0.7, at this speed region, round bilge craft has perfectly resistance performance and become the first consideration among other craft configurations. However, the rolling performance of round craft may not good and may has negative effect to seakeeping performance and comfortable. Meanwhile, knuckle bilge craft (also named V-craft) has V cross sections and enhance the rolling damping, the seakeeping performance is better than round bilge craft and resistance performance is briefly worse than round bilge craft.
According to the advantages of the two crafts, a new high speed craft named round & knuckle craft can be designed, the front hull of the craft may identical to round craft and rear hull may identical to knuckle craft. It hopes that in the same dimensions and similar position of longitudinal center of buoyancy, this craft’s resistance performance is as well as round craft and rolling performance is as well as knuckle craft.
Hull lines design is a crucial step in craft design, the traditional method of hull lines design is obeying to the excellence model crafts and series crafts, after changing their dimensions and other factors, new hull lines can be obtained. However, while the design factors have to be change, the hull lines need to be crated again, and this method have to spend so much time and energy. Parametric design can solve this problem, this method use some design parameters to express the hull lines, and hull lines can be visible..