基于fpga无速度传感器.doc

DOC格式手机打开展开

基于fpga无速度传感器,摘要由于矢量控制中要求电动机的转速严格地和给定转速保持一致,这就需要对转速进行反馈。一般的转速反馈需要在变频器的外部附加测试装置,但由于在测速装置的安装与维护等的过程中出现了一系列的问题,国内外专家从不同的角度进行分析,提出了多种无速度传感器矢量控制方法。无速度传感器矢量控制就是说在了解电动机参数的前提下,只需要检测电...
编号:5-209253大小:6.78M
分类: 论文>通信/电子论文

内容介绍

此文档由会员 违规屏蔽12 发布

摘 要
由于矢量控制中要求电动机的转速严格地和给定转速保持一致,这就需要对转速进行反馈。一般的转速反馈需要在变频器的外部附加测试装置,但由于在测速装置的安装与维护等的过程中出现了一系列的问题,国内外专家从不同的角度进行分析,提出了多种无速度传感器矢量控制方法。无速度传感器矢量控制就是说在了解电动机参数的前提下,只需要检测电动机的端电压和电流,就能算出转子磁通及其角速度,并进而推算出转矩电流指令和励磁电流指令,实现矢量控制。
无速度传感器矢量控制中的方法之一—模型参考自适应控制方式是对参考模型和实际过程的输出或状态进行比较,并通过自适应控制器(或自适应律)去调整线性控制器的某些参数,或产生一个辅助输入,以使在某种意义下实际输出与参考模型输出之间的偏差尽可能的小。本文采用这种方法,对感应电机数学模型进行推理,结合感应电机中电压模型与电流模型与角速度 的关系,设定电压模型为参考模型,电流模型为可调模型,以电压模型的输出作为转子磁链的期望值,电流模型的输出作为转子磁链的推算值,从而设计出转速自适应辨识系统框图。然后采用空间电压矢量脉宽调制方式,并将模糊控制理论应用于感应电机的变频调速中,最后在MATLAB/Simulink平台上建立了无速度传感器矢量控制的整体模型框图。仿真结果表明,模型参考自适应更能较好地估计电机的磁链及转速,具有良好的稳态辨识特性。
在MATLAB/Simulink仿真成功后,再根据感应电机控制器的需求及FPGA数据处理速度高的特点,本文还提出了基于FPGA的无速度传感器矢量控制的设计方案。按照FPGA模块化设计思想,将整个系统进行了合理的划分,对其中反派克变换、空间电压矢量技术、模数转换及模糊PID控制器等重要模块的实现算法进行了详细的分析与深入的研究。最后各模块通过QUARTUSII自带仿真软件进行仿真,通过功能仿真结果,表明该方案具有较好的在线调速性能。

关键词 FPGA;无速度传感器矢量控制;模型参考自适应;空间电压矢量技术








Abstract
Vector control requirements motor speed should keep consistent strictly with given speed,so motor speed needs feedback. General speed feedback needs testing device outside the inverter, but a series of problems come up in the process of the installation and maintenance of speed measuring devices. Because of these, domestic and international experts proposes a variety of speed sensorless vector control methods from different points. Speed sensorless vector control means in the premise of the understanding of motor parameters, even if it only detects voltage and current of the motor, it can calculate the rotor flux and angular velocity yet, and then calculate the torque current instructions and excitation current instructions,in order to realize vector control.
One kind of speed sensorless vector control methods—model reference adaptive control method, which is used to compare the outputs or states of reference model and actual process, and then adjust some parameters of the linear controller or produces an auxiliary input with the adaptive controller (or the adaptive law),so that the deviation between reference model and actual process can be made as small as possible in a sense.In this paper ,based on this method, the voltage model is set as reference model and the current model is set as the adjustable model by combining the relationship between the two models, after the simple reasoning of the mathematical model of induction motor. Then the reference model output is set as expected value of the rotor flux and the adjustable model output is set as calculated value of the rotor flux. In this way, a speed adaptive identification system frame is designed. After that,using SVPWM pulse width modulation mode and applying the fuzzy control theory to the frequency control of the induction motor, a speed sensor vector control diagram of the whole model is setted up on the MATLAB/SIMULINK platform finally. Simulation results show that the model reference adaptive estimates flux and speed better,with good steady-state recognition properties.
After the success of MATLAB/SIimulink simulation, according to the needs of induction motor controller and data processing speed high characteristic of FPGA, this paper also puts forward speed sensorless vector control design scheme based on FPGA. According to the modular design of FPGA, the whole system is divided reasonably, in which such as Park transformation, SVPWM, AD transform and fuzzy PID controller, such important of the module algorithm to carry on the detailed analysis and in-depth research. Finally each module through QUARTUSII simulation software, the results show that this scheme has better performance of speed online through the function simulation.

Key words FPGA;Speed Sensorless Vector Control;model reference adaptive system; SVPWM;
目 录
摘要 I
Abstract II
第一章 绪论 1
1.1 交流电机调速系统的发展概况 1
1.2 无速度传感器矢量控制的现状及研究方向 3
1.2.1 无速度传感器矢量控制的现状 3
1.2.2 无速度传感器矢量控制的控制方式 3
1.2.3 无速度传感器矢量控制的研究方向 5
1.3 课题的研究背景及意义 5
1.4 本课题的主要内容 6
第二章 感应电动机的数学模型和坐标变换 8
2.1感应电动机的数学模型 8
2.2 矢量控制理论基础 10
2.2.1 矢量控制的基本思想 10
2.2.2 矢量控制原理 11
2.3 感应..