在线式ups.doc

约83页DOC格式手机打开展开

在线式ups,摘要随着科学技术的高速发展和人们生活水平的不断提高,不间断电源(ups)在日常生活中应用越来越广泛,各行各业对ups的性能要求也越来越高。近年来,微处理器性能的不断提高及其外围电子器件的不断发展,使得ups的数字控制技术逐渐完善,并将逐步取代模拟控制实现ups的控制功能。目前ups的数字控制技术常采用mcu和dsp作为...
编号:20-209311大小:5.11M
分类: 论文>通信/电子论文

内容介绍

此文档由会员 违规屏蔽12 发布

摘 要
随着科学技术的高速发展和人们生活水平的不断提高,不间断电源(UPS)在日常生活中应用越来越广泛,各行各业对UPS的性能要求也越来越高。近年来,微处理器性能的不断提高及其外围电子器件的不断发展,使得UPS的数字控制技术逐渐完善,并将逐步取代模拟控制实现UPS的控制功能。目前UPS的数字控制技术常采用MCU和DSP作为控制核心,由于电子半导体器件不断地向高频、高效及智能化方向发展,这种控制方法往往不能完全满足UPS的性能要求。
近几年,大规模集成电路的迅速发展,现场可编程门阵列(FPGA)集成度更高、速度更快和价位更低,在信号与信息处理领域的应用越来越广泛。与DSP、单片机相比,FPGA器件具有更高的处理速度和可靠性,并且可编程逻辑器件有设计灵活、集成度高、设计周期短等突出优点,因此本文将其应用于UPS控制系统中以满足高性能的应用需求。
本文首先简要介绍了在线式UPS的整体设计方案及FPGA的结构、优越性及其开发过程,其次论述了模糊PID控制和SPWM的基本原理以及它们的实现方法。针对数字PID动态性能差、控制灵活度低等缺点,本文引入模糊PID控制,这种控制算法结合了模糊控制调节速度快和PID控制稳态性能好的优点,将其应用到UPS控制系统中,提高逆变器的性能。在设计中,本文运用MATLAB对所涉及到的算法进行分析,并通过Matlab/Simulink工具箱对在线式UPS整个系统进行设计仿真。在本文的工作中,采用DSP Builder对正弦信号发生器、SPWM控制器和模糊PID控制器等进行设计,并转换生成VHDL语言,然后在Quartus II开发软件中编译仿真下载验证。通过具体的仿真分析及实验验证,证实了模糊PID控制应用的可行性以及FPGA控制器应用于在线式UPS控制系统中的优越性,同时也验证了本方案设计的正确性。

关键词 不间断电源;逆变器;模糊PID控制;FPGA




Abstract
With modern science rapid development and people living standard rise ceaselessly, the uninterrupted power supply (UPS) is applied widely in daily life, the performance requirements of UPS are higher and higher in the meantime. In recent years, with the continuous improvement of microprocessor performance and the continuous development of peripheral electronic devices, the UPS digital control technology has been further improved, and gradually replace the analog control to achieve UPS control functions. At present the digital control technology of UPS often adopted MCU and DSP as control core, Since electronic semiconductor devices are developing in the direction of high frequency, high efficiency and intelligent continuously,this control method often cannot meet the performance requirements of UPS completely.
In recent years, the rapid development of large-scale integrated circuits makes Field-programmable logic devices (FPGA) integration higher, speed faster and price lower. And FPGA is used in signal and information processing fields more widely. Compared with DSP and single-chip microcomputer, FPGA and complex programable logic device (CPLD) have higher processing speed and reliability. FPGA has the advantages of flexible design, high integration, high speed, and short design cycle, so in this thesis, FPGA was used in UPS control system to meet the application requirements with high performance.
Firstly, this thesis introduced the overall design scheme of UPS, and the structure, advantages and development process of FPGA. Secondly, it discussed the fuzzy proportion integration differentiation (PID) control, the basic principle of SPWM and the realization method. Because digital PID has the disadvantages of poor dynamic performance and it is not quite well in the control flexibility, this thesis selected the Fuzzy-PID control. This control algorithm combines the advantages of high fuzzy control regulation speed and good PID control steady performance. Its application in UPS control system improved the inverter performance. In the design, it used MATLAB tools to analyze the algorithm involved in the thesis. And it used the MATLAB/Simulink toolbox to design simulation of the whole system of UPS. In addition, this thesis used DSP Builder to design the sine signal generator, SPWM controller and Fuzzy PID controller, and it generated VHDL language. And then it used Quartus II to compile, simulation and download validation. Through the simulation analysis and experimental verification, it confirmed the application feasibility of Fuzzy-PID control and the superiority of the FPGA controller application in UPS control system. What’s more, it also validated the correctness of the design in this thesis.

Keywords UPS; Inverter; Fuzzy-PID control; FPGA



目 录
摘 要 I
Abstract III
第1章 绪论 1
1.1 UPS概述 1
1.2 国内外现状和发展方向 2
1.2.1 国内外研究动态 2
1.2.2 发展趋势 3
1.3 课题研究的目的和意义 3
1.4 课题研究的内容与方法 5
第2章 总体设计方案及相关原理 6
2.1 在线式UPS总体设计 6
2.1.1 在线式UPS 结构 6
2.1.2 在线式UPS的工作原理 7
2.2 控制方法的选择 8
2.2.1 相关控制方法 8
2.2.2 FPGA简介 9
2.3 SPWM技术 15
2.3.1 SPWM基本原理 15
2.3.2 SPWM调制方式 16
2.4 控制策略 18
2.4.1 UPS各种数字化控制策略综述 18
2.4.2 PID控制 20
2.4.3 模糊控制 22
2.4.4 Fuzzy-PID控制 25
2.5 本章小结 28
第3章 UPS系统硬件设计 29
3.1 主电路 29
3.1.1 整流..