基于dsp的云模型控制器.doc
约66页DOC格式手机打开展开
基于dsp的云模型控制器,摘要在实际控制系统中,常常会碰到一些系统需要大量的实验和不断尝试才能达到很好的控制效果。这种控制方式带有很大的主观性,同时这些系统很难用具体的数学模型来描述。对它们的控制方法是从人的生活经验中得到的,而经典控制理论在这些系统面前则显得无能为力。因此如何设计行之有效的定性与定量的转换模型就成为摆在专家学者面前的重要课题。...
内容介绍
此文档由会员 违规屏蔽12 发布
摘 要
在实际控制系统中,常常会碰到一些系统需要大量的实验和不断尝试才能达到很好的控制效果。这种控制方式带有很大的主观性,同时这些系统很难用具体的数学模型来描述。对它们的控制方法是从人的生活经验中得到的,而经典控制理论在这些系统面前则显得无能为力。因此如何设计行之有效的定性与定量的转换模型就成为摆在专家学者面前的重要课题。上个世纪90年代李德毅教授成功的运用云模型推理方法,实现了对三级倒立摆各类平衡姿态的动态转换,云模型理论得到了迅速发展。
云模型是用语言值表示的某个定性概念与其定量表示之间的不确定性转换模型。它将人类用语言值表述的控制经验构成规则,多条规则构成规则库。当外部有输入刺激规则时,通过云模型不确定性推理,实现人的不确定性推理和控制,而且,使用这种控制方式,并不需要建立控制对象的精确数学模型,仅需要的是利用定性知识推理实现对系统的有效控制。
针对云模型的概念表述、推理规则、内在机理等问题,诸多学者进一步提出自己的研究成果。将云模型与神经网络、蚁群算法相结合,也是近几年新的研究趋势。将云模型引入自动控制系统是一种全新的尝试。云模型用于智能控制可以较好地解决系统的状态只能用不精确的定性量来描述的复杂系统的控制。从本质上来说,云模型模拟的是人的不确定性智能控制方式,是一种定性控制机理。将云模型的定性推理方法引入控制系统中,不要求给出被控对象的精确数学模型,将人的自然语言表达的控制经验通过云模型定性规则控制器,可以实现对倒立摆的稳定控制。近几年来,云模型研究领域又取得了许多新的进展。
云模型在智能控制领域已经得到了很多应用,但这些应用往往是在计算机上使用软件实现的,计算机本身固有的缺点,体积大、成本高、功耗大等都限制了云模型在控制领域的进一步应用。
首先从云模型基本概念理论出发,包括云模型的定义、正态云模型的普适性以及三熵规则等基础概念,研究学习了基于规则发生器的云模型不确定性推理算法、一维云模型系统的通用逼近性理论和常规云模型控制器的设计方法和步骤。其次,详细地对云模型控制理论算法在DSP上的具体实现的相关技术进行了研究与实现,主要包括通过数的定标将浮点数据转化为定点数据、用程序实现随机数的生成以及硬件平台的设计等。并在自己设计的硬件平台基础上对云模型不确定性推理算法进行了实现与验证。进而,针对履带机器人巡航系统设计了速度云模型控制器和转角云模型控制器,利用超声波传感器实时检测障碍物距离实现对履带机器人的智能行走控制。然后,在此基础上研究学习了基于MATLAB开发平台的一些模型设计技术,主要包括用C语言编写S-Function模块和自动代码生成。研究了一种在MATLAB环境下通过S函数与RTW工具将云模型推理算法集成为一个专用DSP库的方法,进而将该云模型算法库应用于直流电机调速系统和龙人宝贝车复杂环境避障系统。最后,对全文所做的工作进行了总结并提出了下一步的研究方向。
关键词 云模型;智能控制;数字信号处理器;云模型控制器
Abstract
In practical applications, we often encounter some systems need a lot of experimentation and constantly trying to achieve good control effect. This control method with a lot of subjectivity, and these systems are difficult to use a specific mathematical model to describe. Way of control them is to get people's life experience, but the classical control theory is powerless. How to design effective conversion model (controller) of qualitative and quantitative has become an important subject which placed in front of experts and scholars. 90s of the last century, Professor Li Deyi successfully used cloud model reasoning to realize the dynamic conversion for all kinds of balance stances of three class of inverted pendulum. Cloud model theory has been developing rapidly. At present, the cloud model has made Gratifying research results in various fields.
Against the concept of cloud model expression, inference rules, inherent mechanism and other issues, many scholars further their research achievements. Cloud model will be integrated with neural networks, ant algorithms, as well as new trends of the past few years. Cloud model is a new attempt to introduce automatic control system. Cloud model for intelligent control systems can be used to solve the state can only be described by the amount of inaccurate characterization of complex systems. In essence, the cloud is the model of uncertainty intelligent control, is a qualitative control mechanism. Qualitative Reasoning of cloud model will be introduced in the control system. It is not required to give an exact mathematical model of the object. Natural language of human experience through the cloud model qualitative rules controller will be expressed and the stability of the inverted pendulum control can be achieved. In recent years, the cloud model has scored new progress in the field.
In allusion to the development condition of cloud model basic theories and intrinsic shortcomings of computers, design a cloud model controller based on digital signal processor, which can make effective control on systems come true.
First of all, with the beginning of cloud model concepts and theories, including the definition, the universality of normal cloud and thrice entropy rule and so on, research and study the uncertain reasoning algorithm based on cloud model rules generators, the approximating theory of one dimension cloud model system and the design method and steps of general cloud model controller. Second, work related technologie..
在实际控制系统中,常常会碰到一些系统需要大量的实验和不断尝试才能达到很好的控制效果。这种控制方式带有很大的主观性,同时这些系统很难用具体的数学模型来描述。对它们的控制方法是从人的生活经验中得到的,而经典控制理论在这些系统面前则显得无能为力。因此如何设计行之有效的定性与定量的转换模型就成为摆在专家学者面前的重要课题。上个世纪90年代李德毅教授成功的运用云模型推理方法,实现了对三级倒立摆各类平衡姿态的动态转换,云模型理论得到了迅速发展。
云模型是用语言值表示的某个定性概念与其定量表示之间的不确定性转换模型。它将人类用语言值表述的控制经验构成规则,多条规则构成规则库。当外部有输入刺激规则时,通过云模型不确定性推理,实现人的不确定性推理和控制,而且,使用这种控制方式,并不需要建立控制对象的精确数学模型,仅需要的是利用定性知识推理实现对系统的有效控制。
针对云模型的概念表述、推理规则、内在机理等问题,诸多学者进一步提出自己的研究成果。将云模型与神经网络、蚁群算法相结合,也是近几年新的研究趋势。将云模型引入自动控制系统是一种全新的尝试。云模型用于智能控制可以较好地解决系统的状态只能用不精确的定性量来描述的复杂系统的控制。从本质上来说,云模型模拟的是人的不确定性智能控制方式,是一种定性控制机理。将云模型的定性推理方法引入控制系统中,不要求给出被控对象的精确数学模型,将人的自然语言表达的控制经验通过云模型定性规则控制器,可以实现对倒立摆的稳定控制。近几年来,云模型研究领域又取得了许多新的进展。
云模型在智能控制领域已经得到了很多应用,但这些应用往往是在计算机上使用软件实现的,计算机本身固有的缺点,体积大、成本高、功耗大等都限制了云模型在控制领域的进一步应用。
首先从云模型基本概念理论出发,包括云模型的定义、正态云模型的普适性以及三熵规则等基础概念,研究学习了基于规则发生器的云模型不确定性推理算法、一维云模型系统的通用逼近性理论和常规云模型控制器的设计方法和步骤。其次,详细地对云模型控制理论算法在DSP上的具体实现的相关技术进行了研究与实现,主要包括通过数的定标将浮点数据转化为定点数据、用程序实现随机数的生成以及硬件平台的设计等。并在自己设计的硬件平台基础上对云模型不确定性推理算法进行了实现与验证。进而,针对履带机器人巡航系统设计了速度云模型控制器和转角云模型控制器,利用超声波传感器实时检测障碍物距离实现对履带机器人的智能行走控制。然后,在此基础上研究学习了基于MATLAB开发平台的一些模型设计技术,主要包括用C语言编写S-Function模块和自动代码生成。研究了一种在MATLAB环境下通过S函数与RTW工具将云模型推理算法集成为一个专用DSP库的方法,进而将该云模型算法库应用于直流电机调速系统和龙人宝贝车复杂环境避障系统。最后,对全文所做的工作进行了总结并提出了下一步的研究方向。
关键词 云模型;智能控制;数字信号处理器;云模型控制器
Abstract
In practical applications, we often encounter some systems need a lot of experimentation and constantly trying to achieve good control effect. This control method with a lot of subjectivity, and these systems are difficult to use a specific mathematical model to describe. Way of control them is to get people's life experience, but the classical control theory is powerless. How to design effective conversion model (controller) of qualitative and quantitative has become an important subject which placed in front of experts and scholars. 90s of the last century, Professor Li Deyi successfully used cloud model reasoning to realize the dynamic conversion for all kinds of balance stances of three class of inverted pendulum. Cloud model theory has been developing rapidly. At present, the cloud model has made Gratifying research results in various fields.
Against the concept of cloud model expression, inference rules, inherent mechanism and other issues, many scholars further their research achievements. Cloud model will be integrated with neural networks, ant algorithms, as well as new trends of the past few years. Cloud model is a new attempt to introduce automatic control system. Cloud model for intelligent control systems can be used to solve the state can only be described by the amount of inaccurate characterization of complex systems. In essence, the cloud is the model of uncertainty intelligent control, is a qualitative control mechanism. Qualitative Reasoning of cloud model will be introduced in the control system. It is not required to give an exact mathematical model of the object. Natural language of human experience through the cloud model qualitative rules controller will be expressed and the stability of the inverted pendulum control can be achieved. In recent years, the cloud model has scored new progress in the field.
In allusion to the development condition of cloud model basic theories and intrinsic shortcomings of computers, design a cloud model controller based on digital signal processor, which can make effective control on systems come true.
First of all, with the beginning of cloud model concepts and theories, including the definition, the universality of normal cloud and thrice entropy rule and so on, research and study the uncertain reasoning algorithm based on cloud model rules generators, the approximating theory of one dimension cloud model system and the design method and steps of general cloud model controller. Second, work related technologie..