多泵智能控制器.doc
约81页DOC格式手机打开展开
多泵智能控制器,摘 要本文针对传统pid控制在供水系统应用上具有的适应性差和大功率电源工频/变频切换会产生冲击电流等特点,研究了一种,该控制器将模糊控制参与到pid调节中,使供水控制器参数能根据外界条件变化实时调整;同时将锁相技术应用到电源切换中,实现了切换电源减小或消除冲击电流。由于恒压供水系统的非线性和时变性等特点,...
内容介绍
此文档由会员 违规屏蔽12 发布
摘 要
本文针对传统PID控制在供水系统应用上具有的适应性差和大功率电源工频/变频切换会产生冲击电流等特点,研究了一种多泵智能控制器,该控制器将模糊控制参与到PID调节中,使供水控制器参数能根据外界条件变化实时调整;同时将锁相技术应用到电源切换中,实现了切换电源减小或消除冲击电流。
由于恒压供水系统的非线性和时变性等特点,加之恒水位供水系统也没有精确的模型,供水系统用线性化方法进行控制比较困难,传统PID控制无法适时调节其参数,适应性差。模糊控制特别适用于非线性、时变、模型不确定的系统上,把模糊控制和PID控制结合起来,可以使PID控制器的参数能根据模糊控制规则进行相应的调整。当供水系统需要变频或工频电源的电机时,电机的平稳切换一直是一个难点。电源不平稳切换带来的电流冲击浪费能源且对管网等设备也是一个潜在威胁。针对该问题,本课题采用了电源同步切换控制技术,当一台电机由变频电源切换到工频电源时,锁相环路在C8051F020的协调下控制变频器的输出频率锁定在工频频率,一旦锁定便开始发出切泵指令,做到同步切换,大大降低了冲击电流,提高了系统的安全性。课题从产品的角度出发,致力于解决上述两个问题,具体完成了以下工作:
(1)研究了供水系统的多样性和工作原理,对不同情况下的供水要求做了分析,总结出恒压供水系统的近似数学模型,对不同的供水场合采用不同的控制策略。
(2)研究了传统PID控制,并结合模糊控制设计出参数可以自适应调整的模糊PID控制器,并进行了仿真,验证模糊PID控制器的合理性。
(3)把锁相技术从通信领域引入到电源切换的控制领域上,并设计出锁相同步切换系统,并在Simulink环境下进行了仿真,说明了其正确性。
(4)在上述的理论基础上,进行了控制器的总体设计,包括各部分硬件电路和软件开发。在实验室进行的模拟实验也取得了预期的成果。
关键字:模糊PID;供水系统;多泵;锁相环;同步切换;
Abstract
With the development of the domestic economy, businesses and residents become increasingly demanding for water supply. Diversification of supply requirements also contributed to the development of the field of water control. At present the automatic control system has been widely applied to residents of the water supply. However, due to constant pressure water supply of non-linear and time-varying characteristics, combined with constant water supply systems were not accurate models, water supply system is more difficult to control with the linear method, traditional PID control cannot properly regulate their parameters, so, adaptability is poor. Fuzzy control is based on the characteristics of the human mind with basis of fuzzy logic, unlike classical control that requires the accurate description of the transfer function, put fuzzy controller and PID controller together and the parameters of the PID controller based on fuzzy control rules can be adjusted accordingly. The fuzzy control rule is actually an expert knowledge base, which is based on the specific circumstances of the project, so, this controller is bound to be more adapted to changing conditions, and simulation also shows the superiority of the fuzzy PID controller.
When the water supply system requires several different type power of motor, the motor switch has been a difficult. When the motor switch from the inverter power to power-frequency, the impact shocks of current can cause large pressure, this waste the energy and is a potential threat to pipe network equipment, and prone to failure over time. Address the problem, put phase lock technology applied to the field of power switching, PLL in coordination with the C8051F020 control inverter output locked in power frequency, once locked, switch command issued. Reduce the impact of current and improve the system security.
The subject stood a product point of view, access to a wealth of information, committed to address two problems above, the specific work as follows have been done:
(1) The diversity of the water supply system and working principle had been studied. Analyzed the water requirements of different situations, and derived mathematical model of water supply systems.
(2) Design a fuzzy PID controller that parameters can be adaptive, and make a matlab simulation to verify its legitimacy.
(3) Applied phase locked power into the switch technology field, and make a matlab
simulation to verify its correctness.
(4) On the basis of above theory, overall design of the controller, include hardware circuitry and software exploitation.
Keywords: Fuzzy PID; water supply system; Multi-pump; PLL; synchronous switch
目录
摘 要 I
Abstract III
第1章 绪论 1
1.1智能多泵控制器的研究背景及意义 1
1.1.1本课题提出的背景 1
1.1.2本课题研究内容和意义 2
1.2供水系统控制的国内外现状 2
1.3多泵控制存在的问题及解决方案 3
1.3.1供水系统的特点和模糊PID控制 3
1.3.2工频电源与变频电源的同步切换 3
1.4课题的主要工作 4
第二章 供水系统的工作原理和近似模型 5
2.1 交流变频技术简介 5
2.2 变频调速的原理 7
2.3 多泵恒压供水系统基本特性和节能原理 7
2.3.1供水系统的基本特点与工作点 7
2.3.2变频调速的节能分析 8
2.4变频恒压供水系统近似模型 9
2.4.1压力控制点的选择 9
2.4.2 变频调速恒压供水系统的特点 10
2.4.3 供水系统的近似数学模型 10
2.5 本章小结 12
..
本文针对传统PID控制在供水系统应用上具有的适应性差和大功率电源工频/变频切换会产生冲击电流等特点,研究了一种多泵智能控制器,该控制器将模糊控制参与到PID调节中,使供水控制器参数能根据外界条件变化实时调整;同时将锁相技术应用到电源切换中,实现了切换电源减小或消除冲击电流。
由于恒压供水系统的非线性和时变性等特点,加之恒水位供水系统也没有精确的模型,供水系统用线性化方法进行控制比较困难,传统PID控制无法适时调节其参数,适应性差。模糊控制特别适用于非线性、时变、模型不确定的系统上,把模糊控制和PID控制结合起来,可以使PID控制器的参数能根据模糊控制规则进行相应的调整。当供水系统需要变频或工频电源的电机时,电机的平稳切换一直是一个难点。电源不平稳切换带来的电流冲击浪费能源且对管网等设备也是一个潜在威胁。针对该问题,本课题采用了电源同步切换控制技术,当一台电机由变频电源切换到工频电源时,锁相环路在C8051F020的协调下控制变频器的输出频率锁定在工频频率,一旦锁定便开始发出切泵指令,做到同步切换,大大降低了冲击电流,提高了系统的安全性。课题从产品的角度出发,致力于解决上述两个问题,具体完成了以下工作:
(1)研究了供水系统的多样性和工作原理,对不同情况下的供水要求做了分析,总结出恒压供水系统的近似数学模型,对不同的供水场合采用不同的控制策略。
(2)研究了传统PID控制,并结合模糊控制设计出参数可以自适应调整的模糊PID控制器,并进行了仿真,验证模糊PID控制器的合理性。
(3)把锁相技术从通信领域引入到电源切换的控制领域上,并设计出锁相同步切换系统,并在Simulink环境下进行了仿真,说明了其正确性。
(4)在上述的理论基础上,进行了控制器的总体设计,包括各部分硬件电路和软件开发。在实验室进行的模拟实验也取得了预期的成果。
关键字:模糊PID;供水系统;多泵;锁相环;同步切换;
Abstract
With the development of the domestic economy, businesses and residents become increasingly demanding for water supply. Diversification of supply requirements also contributed to the development of the field of water control. At present the automatic control system has been widely applied to residents of the water supply. However, due to constant pressure water supply of non-linear and time-varying characteristics, combined with constant water supply systems were not accurate models, water supply system is more difficult to control with the linear method, traditional PID control cannot properly regulate their parameters, so, adaptability is poor. Fuzzy control is based on the characteristics of the human mind with basis of fuzzy logic, unlike classical control that requires the accurate description of the transfer function, put fuzzy controller and PID controller together and the parameters of the PID controller based on fuzzy control rules can be adjusted accordingly. The fuzzy control rule is actually an expert knowledge base, which is based on the specific circumstances of the project, so, this controller is bound to be more adapted to changing conditions, and simulation also shows the superiority of the fuzzy PID controller.
When the water supply system requires several different type power of motor, the motor switch has been a difficult. When the motor switch from the inverter power to power-frequency, the impact shocks of current can cause large pressure, this waste the energy and is a potential threat to pipe network equipment, and prone to failure over time. Address the problem, put phase lock technology applied to the field of power switching, PLL in coordination with the C8051F020 control inverter output locked in power frequency, once locked, switch command issued. Reduce the impact of current and improve the system security.
The subject stood a product point of view, access to a wealth of information, committed to address two problems above, the specific work as follows have been done:
(1) The diversity of the water supply system and working principle had been studied. Analyzed the water requirements of different situations, and derived mathematical model of water supply systems.
(2) Design a fuzzy PID controller that parameters can be adaptive, and make a matlab simulation to verify its legitimacy.
(3) Applied phase locked power into the switch technology field, and make a matlab
simulation to verify its correctness.
(4) On the basis of above theory, overall design of the controller, include hardware circuitry and software exploitation.
Keywords: Fuzzy PID; water supply system; Multi-pump; PLL; synchronous switch
目录
摘 要 I
Abstract III
第1章 绪论 1
1.1智能多泵控制器的研究背景及意义 1
1.1.1本课题提出的背景 1
1.1.2本课题研究内容和意义 2
1.2供水系统控制的国内外现状 2
1.3多泵控制存在的问题及解决方案 3
1.3.1供水系统的特点和模糊PID控制 3
1.3.2工频电源与变频电源的同步切换 3
1.4课题的主要工作 4
第二章 供水系统的工作原理和近似模型 5
2.1 交流变频技术简介 5
2.2 变频调速的原理 7
2.3 多泵恒压供水系统基本特性和节能原理 7
2.3.1供水系统的基本特点与工作点 7
2.3.2变频调速的节能分析 8
2.4变频恒压供水系统近似模型 9
2.4.1压力控制点的选择 9
2.4.2 变频调速恒压供水系统的特点 10
2.4.3 供水系统的近似数学模型 10
2.5 本章小结 12
..