耙吸挖泥船dp dt控制.doc
约92页DOC格式手机打开展开
耙吸挖泥船dp dt控制,摘 要耙吸挖泥船海上作业要求保持在特定区域或者按照预定轨迹航行,这些工作需要有性能良好的动力定位系统来保证。随着耙吸挖泥船深海作业的不断深入,对动力定位技术的指标要求也越来越严格。本课题是江苏省科技厅重大成果转化项目,文中以某大型耙吸挖泥船为研究背景,结合实际工程应用针对耙吸挖泥船定点定位(dp)和动态循迹(dt)两种...
内容介绍
此文档由会员 违规屏蔽12 发布
摘 要
耙吸挖泥船海上作业要求保持在特定区域或者按照预定轨迹航行,这些工作需要有性能良好的动力定位系统来保证。随着耙吸挖泥船深海作业的不断深入,对动力定位技术的指标要求也越来越严格。本课题是江苏省科技厅重大成果转化项目,文中以某大型耙吸挖泥船为研究背景,结合实际工程应用针对耙吸挖泥船定点定位(DP)和动态循迹(DT)两种功能下控制器设计进行探讨和研究,论文主要包括以下几个方面的工作:
针对耙吸挖泥船DP-艏喷工作模式在零航速下建立DP低频运动模型,模型建立过程中详细阐述了艏喷作业产生的反推力的补偿方法。针对DT-疏浚和DT-航行工作模式在一定航速下建立DT低频运动模型,在循迹过程中分析船体阻力以及疏浚作业时耙臂产生的拖曳力,并建立其计算模型。同时为满足控制器设计需要,建立了风浪流等环境干扰力模型。
针对耙吸挖泥船DP控制器设计,结合工程应用,采用增量式数字PID控制算法。由于PID控制算法目前还广泛应用于船舶控制系统中,并且适合低频运动控制,在零航速情况下,各自由度方向可以解耦进行分析。文中依据PID控制算法思想对耙吸挖泥船三个自由度设计独立的控制器,并且编写MATLAB程序仿真平移作业时的定位效果。仿真效果表明:采用增量式数字PID控制算法具有良好的控制效果,可以很好的对耙吸挖泥船进行定点定位控制,能够满足实际作业需要。
针对耙吸挖泥船DT-疏浚模式,结合常规航迹控制策略和“视线”(LOS)控制策略,根据偏差大小范围采用分区控制策略对航迹控制进行分析。同时考虑到在疏浚过程中变吃水情况,系统模型参数处于不断变化状态,因此在DT-控制器设计部分充分考虑模型的不确定性因素,运用模糊PID控制算法作为实际工程应用方法。在认真总结和分析实船工作人员经验的基础之上,制定相应模糊控制规则,结合分区控制思想设计DT控制器。此外,采用MATLAB中模糊工具箱和Simulink对DT疏浚工作模式在不同工况下对比分析实际控制效果。仿真结果显示:在分区控制策略下结合模糊PID控制算法,能够获得更好的系统动态性能,更重要的是能够提高疏浚精度,具有实际工程价值。
关键词 耙吸挖泥船;动力定位系统;PID算法;变吃水;模糊PID
Abstract
Trailing suction hopper dredger required keeping at the fixed zone or navigation with a predefined track while dredging at sea, all these functions should guaranteed by a good performance Dynamic Positioning system. With the deepening of deep-sea operation, the strict indicators of dynamic positioning technology for Trailing suction hopper dredger are increasing improved. This issue is a major technology achievement conversion project of Jiangsu province, here have a research on Dynamic Positioning or Tracking system controller design, combined with the application of actual project based on Trailing suction hopper dredger. This thesis contains the following parts:
Towards the rain-bowing mode of Dynamic Positioning, constructed the DP low frequency model for TSHD while the speed of the hull near to zero. During the process introduced the compensation method of anti-resistance while rain-bowing operation. For DT-dredging and DT-navigation mode under a certain speed, established the DT low frequency motion model, analyzed the hull resistance and the rake arm drag force which generated by the process while dredging, also established the calculation model. Meantime, in order to meet the needs of controller design, the model of wind, wave and current and other environmental interference were constructed.
Towards the DP controller for TSHD, here used the PID algorithm as the main control algorithm. As the PID control algorithm is still widely used in ship control systems, and is suitable for low-frequency motion control, also the three degrees of freedom of TSHD motion can be decoupled into three independent parts to analysis. So in the thesis designed three independent controllers based on PID algorithm. Moreover, compiles the program under the circumstance of MATLAB to see the effect of the corresponding controller. Simulation results show that the incremental digital PID control algorithm has a good control effect, well done on Trailing suction hopper dredger for fixed positioning control, to meet operational needs.
Towards the DT-dredging mode, according to the deviation of the cross-error, in order to control hull followed a predefined path, here used sub-control strategies which combined with conventional control strategies and line of sight (LOS) control strategy. Furthermore, the draft of the hull is changing during dredging process, the system model parameters also are changing constantly, so the full uncertainties should be taking into account in the design of DT controller. So the fuzzy PID control algorithm is used as a practical application method. After a careful summary and analysis of ship based on staff experience, to develop appropriate fuzzy control rules, combined with the sub-control design ideas to design the DT controller. In addition, the use of fuzzy toolbox in MATLAB to do simulation of different operation conditions and analysis the actual control effects during dredging. Simulation results show that sub-control strategy with fuzzy PID control algorithm can obtain better system dynamic performance, more importantly, to improve dredging accuracy, has the actual project value.
Keywords Trailing..
耙吸挖泥船海上作业要求保持在特定区域或者按照预定轨迹航行,这些工作需要有性能良好的动力定位系统来保证。随着耙吸挖泥船深海作业的不断深入,对动力定位技术的指标要求也越来越严格。本课题是江苏省科技厅重大成果转化项目,文中以某大型耙吸挖泥船为研究背景,结合实际工程应用针对耙吸挖泥船定点定位(DP)和动态循迹(DT)两种功能下控制器设计进行探讨和研究,论文主要包括以下几个方面的工作:
针对耙吸挖泥船DP-艏喷工作模式在零航速下建立DP低频运动模型,模型建立过程中详细阐述了艏喷作业产生的反推力的补偿方法。针对DT-疏浚和DT-航行工作模式在一定航速下建立DT低频运动模型,在循迹过程中分析船体阻力以及疏浚作业时耙臂产生的拖曳力,并建立其计算模型。同时为满足控制器设计需要,建立了风浪流等环境干扰力模型。
针对耙吸挖泥船DP控制器设计,结合工程应用,采用增量式数字PID控制算法。由于PID控制算法目前还广泛应用于船舶控制系统中,并且适合低频运动控制,在零航速情况下,各自由度方向可以解耦进行分析。文中依据PID控制算法思想对耙吸挖泥船三个自由度设计独立的控制器,并且编写MATLAB程序仿真平移作业时的定位效果。仿真效果表明:采用增量式数字PID控制算法具有良好的控制效果,可以很好的对耙吸挖泥船进行定点定位控制,能够满足实际作业需要。
针对耙吸挖泥船DT-疏浚模式,结合常规航迹控制策略和“视线”(LOS)控制策略,根据偏差大小范围采用分区控制策略对航迹控制进行分析。同时考虑到在疏浚过程中变吃水情况,系统模型参数处于不断变化状态,因此在DT-控制器设计部分充分考虑模型的不确定性因素,运用模糊PID控制算法作为实际工程应用方法。在认真总结和分析实船工作人员经验的基础之上,制定相应模糊控制规则,结合分区控制思想设计DT控制器。此外,采用MATLAB中模糊工具箱和Simulink对DT疏浚工作模式在不同工况下对比分析实际控制效果。仿真结果显示:在分区控制策略下结合模糊PID控制算法,能够获得更好的系统动态性能,更重要的是能够提高疏浚精度,具有实际工程价值。
关键词 耙吸挖泥船;动力定位系统;PID算法;变吃水;模糊PID
Abstract
Trailing suction hopper dredger required keeping at the fixed zone or navigation with a predefined track while dredging at sea, all these functions should guaranteed by a good performance Dynamic Positioning system. With the deepening of deep-sea operation, the strict indicators of dynamic positioning technology for Trailing suction hopper dredger are increasing improved. This issue is a major technology achievement conversion project of Jiangsu province, here have a research on Dynamic Positioning or Tracking system controller design, combined with the application of actual project based on Trailing suction hopper dredger. This thesis contains the following parts:
Towards the rain-bowing mode of Dynamic Positioning, constructed the DP low frequency model for TSHD while the speed of the hull near to zero. During the process introduced the compensation method of anti-resistance while rain-bowing operation. For DT-dredging and DT-navigation mode under a certain speed, established the DT low frequency motion model, analyzed the hull resistance and the rake arm drag force which generated by the process while dredging, also established the calculation model. Meantime, in order to meet the needs of controller design, the model of wind, wave and current and other environmental interference were constructed.
Towards the DP controller for TSHD, here used the PID algorithm as the main control algorithm. As the PID control algorithm is still widely used in ship control systems, and is suitable for low-frequency motion control, also the three degrees of freedom of TSHD motion can be decoupled into three independent parts to analysis. So in the thesis designed three independent controllers based on PID algorithm. Moreover, compiles the program under the circumstance of MATLAB to see the effect of the corresponding controller. Simulation results show that the incremental digital PID control algorithm has a good control effect, well done on Trailing suction hopper dredger for fixed positioning control, to meet operational needs.
Towards the DT-dredging mode, according to the deviation of the cross-error, in order to control hull followed a predefined path, here used sub-control strategies which combined with conventional control strategies and line of sight (LOS) control strategy. Furthermore, the draft of the hull is changing during dredging process, the system model parameters also are changing constantly, so the full uncertainties should be taking into account in the design of DT controller. So the fuzzy PID control algorithm is used as a practical application method. After a careful summary and analysis of ship based on staff experience, to develop appropriate fuzzy control rules, combined with the sub-control design ideas to design the DT controller. In addition, the use of fuzzy toolbox in MATLAB to do simulation of different operation conditions and analysis the actual control effects during dredging. Simulation results show that sub-control strategy with fuzzy PID control algorithm can obtain better system dynamic performance, more importantly, to improve dredging accuracy, has the actual project value.
Keywords Trailing..