多台电机的速度张力.doc
约77页DOC格式手机打开展开
多台电机的速度张力,摘要在现代工业生产中,高性能的多电机同步协调控制可以提高机械、冶金、造纸、纺织等行业产品的质量和成品率。这些产品的生产中都有物料传送或类似的过程,该过程中对速度和张力的精确控制是保证产品质量的关键,而张力和速度又是相互耦合的,如何对张力和速度进行协调控制一直是我们关注的焦点问题。因此研究一种高效、准确的算法来分别控制速...
内容介绍
此文档由会员 违规屏蔽12 发布
摘要
在现代工业生产中,高性能的多电机同步协调控制可以提高机械、冶金、造纸、纺织等行业产品的质量和成品率。这些产品的生产中都有物料传送或类似的过程,该过程中对速度和张力的精确控制是保证产品质量的关键,而张力和速度又是相互耦合的,如何对张力和速度进行协调控制一直是我们关注的焦点问题。因此研究一种高效、准确的算法来分别控制速度和张力具有重要意义。
本文以由皮带连接的三台交流电机所构成的同步系统为对象,进行分析研究,采用基于遗传算法的对角递归神经网络的PID控制算法来实现速度和张力的协调控制。
首先在算法方面,本文对遗传算法和对角递归神经网络的定义、原理及其特性分别进行了分析讨论,针对一般遗传算法早期收敛,参数选择等不足之处,采用了一种改进的自适应遗传算法,给出了交叉率和变异率自适应调整的计算公式;用改进的遗传算法的迭代学习训练来获得对角递归网络的初始参数值,并将初值代入到基于对角递归神经网络的PID算法中,对系统的速度张力进行协调控制。
然后是对三电机的速度张力系统进行分析,建立系统的数学模型;并构建控制系统的仿真模型进行试验。结果表明经过初值优化的对角递归神经网络PID算法在对多变量非线性系统的控制中,可以不断地在线修正PID参数,使系统得到优异的控制,显著改善系统的动静态特性,提高系统的稳定性和鲁棒性。
关键词 对角递归神经网络;遗传算法;实数编码;张力控制;在线调整
ABSTRACT
In the modern industrial production, high performance synchronous coordinated control of multi-motors can improve the quality and the rate of finished products of products in machinery industry, metallurgical industry, paper industry, textile industry and so on. There is material conveying or similar process in the product manufacturing, in which process the accuracy control of speed and tension is the key to guarantee product quality. However, speed and tension are mutual coupled. The problem we focus on is how to control speed and tension coordinately. Therefore, it’s most importantly significant to study an efficient and accuracy algorithm to control speed and tension respectively.
This thesis chooses the synchronous system of three AC motors as study object, which are connected by conveyor belt, and has analysis and research on it, then DRNN– PID(Diagonal Recurrent Neural Network, DRNN ) algorithm based on GA (genetic algorithm) is adopted to realize the coordinated control of speed and tension.
Firstly on algorithm aspect, the definitions, principles and characters are analysed and discussed on GA and DRNN in the thesis. Then, an improved adaptive genetic algorithm is used aiming at the deficiencies of general genetic algorithm in the thesis., such as early convergence and parameter selection, the computational formula is provided in which cross rate and mutation rate are self-adaption. The initial parameter values of DRNN-PID algorithm are obtained from the iterative learning training of the improved genetic algorithm, which are used in DRNN-PID algorithm. At last the speed and tension of system can be coordinately controlled.
Secondly, three-motor speed tension system is analyzed, its mathematic model is established in the thesis, and the control module of the system is built to simulate. The results show that the DRNN – PID algorithm whose initial value is optimized can tune PID parameters on line, achieve excellent control effect, notably improve the system dynamic and static characteristics, increase the system stability and robustness in the control towards multivariable nonlinear system.
Key words Diagonal Recurrent Neural Network (DRNN); genetic algorithm(GA); real coding; tension control; online adjustment
目 录
摘要 I
ABSTRACT III
第一章 绪论 1
1.1 研究的目的和意义 1
1.2 多电机同步系统与张力控制的发展概况 1
1.3 智能算法在多变量非线性系统中的应用 5
1.4 本文研究思路的提出 7
1.5 本文内容的安排 8
第二章 遗传算法和对角递归神经网络 9
2.1 遗传算法 9
2.1.1 遗传算法的基本原理 9
2.1.2 遗传操作 10
2.1.3 基于实数编码的遗传算法 12
2.2 对角递归神经网络 14
2.2.1 神经网络理论基础 14
2.2.2 对角递归神经网络 16
2.3基于遗传算法的DRNN-PID算法 18
2.3.1 基于DRNN的PID控制算法 18
2.3.2 基于遗传算法的DRNN-PID算法 21
2.4 本章小结 23
第三章 三电机的速度张力系统 24
3.1 交流电机的矢量控制 24
3.2 张力控制 26
3.3 三电机的速度张力系统 28
3.4 本章小结 30
第四章 系统仿真模型的构建 31
4.1 仿真工具 31
4.1.1 SIMULINK简介 31
4.1.2 S-Function简介 33
4.2 系统仿真模型的构建 36
4.2.1 构建三电机系统 36
4.2.2 三电机速度张力控制系统的设计 43
4.2.3 控制系统仿真模型的构建 44
4.3 本章小结 46
第五章 仿真试验分析 47
5.1 开环试验分析 47
5.2 基于遗传算法的对角递归神经网络PID控制试验分析 49
5.3 本章小结 62
结论 63
参考文献 65
在现代工业生产中,高性能的多电机同步协调控制可以提高机械、冶金、造纸、纺织等行业产品的质量和成品率。这些产品的生产中都有物料传送或类似的过程,该过程中对速度和张力的精确控制是保证产品质量的关键,而张力和速度又是相互耦合的,如何对张力和速度进行协调控制一直是我们关注的焦点问题。因此研究一种高效、准确的算法来分别控制速度和张力具有重要意义。
本文以由皮带连接的三台交流电机所构成的同步系统为对象,进行分析研究,采用基于遗传算法的对角递归神经网络的PID控制算法来实现速度和张力的协调控制。
首先在算法方面,本文对遗传算法和对角递归神经网络的定义、原理及其特性分别进行了分析讨论,针对一般遗传算法早期收敛,参数选择等不足之处,采用了一种改进的自适应遗传算法,给出了交叉率和变异率自适应调整的计算公式;用改进的遗传算法的迭代学习训练来获得对角递归网络的初始参数值,并将初值代入到基于对角递归神经网络的PID算法中,对系统的速度张力进行协调控制。
然后是对三电机的速度张力系统进行分析,建立系统的数学模型;并构建控制系统的仿真模型进行试验。结果表明经过初值优化的对角递归神经网络PID算法在对多变量非线性系统的控制中,可以不断地在线修正PID参数,使系统得到优异的控制,显著改善系统的动静态特性,提高系统的稳定性和鲁棒性。
关键词 对角递归神经网络;遗传算法;实数编码;张力控制;在线调整
ABSTRACT
In the modern industrial production, high performance synchronous coordinated control of multi-motors can improve the quality and the rate of finished products of products in machinery industry, metallurgical industry, paper industry, textile industry and so on. There is material conveying or similar process in the product manufacturing, in which process the accuracy control of speed and tension is the key to guarantee product quality. However, speed and tension are mutual coupled. The problem we focus on is how to control speed and tension coordinately. Therefore, it’s most importantly significant to study an efficient and accuracy algorithm to control speed and tension respectively.
This thesis chooses the synchronous system of three AC motors as study object, which are connected by conveyor belt, and has analysis and research on it, then DRNN– PID(Diagonal Recurrent Neural Network, DRNN ) algorithm based on GA (genetic algorithm) is adopted to realize the coordinated control of speed and tension.
Firstly on algorithm aspect, the definitions, principles and characters are analysed and discussed on GA and DRNN in the thesis. Then, an improved adaptive genetic algorithm is used aiming at the deficiencies of general genetic algorithm in the thesis., such as early convergence and parameter selection, the computational formula is provided in which cross rate and mutation rate are self-adaption. The initial parameter values of DRNN-PID algorithm are obtained from the iterative learning training of the improved genetic algorithm, which are used in DRNN-PID algorithm. At last the speed and tension of system can be coordinately controlled.
Secondly, three-motor speed tension system is analyzed, its mathematic model is established in the thesis, and the control module of the system is built to simulate. The results show that the DRNN – PID algorithm whose initial value is optimized can tune PID parameters on line, achieve excellent control effect, notably improve the system dynamic and static characteristics, increase the system stability and robustness in the control towards multivariable nonlinear system.
Key words Diagonal Recurrent Neural Network (DRNN); genetic algorithm(GA); real coding; tension control; online adjustment
目 录
摘要 I
ABSTRACT III
第一章 绪论 1
1.1 研究的目的和意义 1
1.2 多电机同步系统与张力控制的发展概况 1
1.3 智能算法在多变量非线性系统中的应用 5
1.4 本文研究思路的提出 7
1.5 本文内容的安排 8
第二章 遗传算法和对角递归神经网络 9
2.1 遗传算法 9
2.1.1 遗传算法的基本原理 9
2.1.2 遗传操作 10
2.1.3 基于实数编码的遗传算法 12
2.2 对角递归神经网络 14
2.2.1 神经网络理论基础 14
2.2.2 对角递归神经网络 16
2.3基于遗传算法的DRNN-PID算法 18
2.3.1 基于DRNN的PID控制算法 18
2.3.2 基于遗传算法的DRNN-PID算法 21
2.4 本章小结 23
第三章 三电机的速度张力系统 24
3.1 交流电机的矢量控制 24
3.2 张力控制 26
3.3 三电机的速度张力系统 28
3.4 本章小结 30
第四章 系统仿真模型的构建 31
4.1 仿真工具 31
4.1.1 SIMULINK简介 31
4.1.2 S-Function简介 33
4.2 系统仿真模型的构建 36
4.2.1 构建三电机系统 36
4.2.2 三电机速度张力控制系统的设计 43
4.2.3 控制系统仿真模型的构建 44
4.3 本章小结 46
第五章 仿真试验分析 47
5.1 开环试验分析 47
5.2 基于遗传算法的对角递归神经网络PID控制试验分析 49
5.3 本章小结 62
结论 63
参考文献 65