磁基准坐标测量机-------外文翻译.doc
约9页DOC格式手机打开展开
磁基准坐标测量机-------外文翻译,1.绪论:在制作粒子加速器时的基本对准问题是改变工件的磁中心线与外部基准之间的位置关系。这一步,是建立临界基准因为它对于校正误差十分重要。这个过程有两种测量方法:1)通过磁中心线建立机械中心线。2)通过机械中心线建立外部基准。下面我们会关注论第二种测量方法,介绍两个斯坦福线性碰撞(slc)的例子。2.目的:建立磁基准是...
内容介绍
此文档由会员 wanli1988go 发布
1.绪论:
在制作粒子加速器时的基本对准问题是改变工件的磁中心线与外部基准之间的位置关系。这一步,是建立临界基准因为它对于校正误差十分重要。这个过程有两种测量方法:
1) 通过磁中心线建立机械中心线。
2) 通过机械中心线建立外部基准。
下面我们会关注论第二种测量方法,介绍两个斯坦福线性碰撞(SLC)的例子。
2.目的:
建立磁基准是为了联系磁电波与外部的基准面的位置。 有利于以后建立联系,在某种意义上这种关系必须立足于全部位置公差。
斯坦福线性碰撞实验预计公差的工件与工件之间重复定位误差SLC’s±100μm由以下公差组成:
磁中心线相对于机械中心线的公差 σ=±30μm
机械中心线相对于基准符号 σ=±50μm
基准符号相对于邻近部分 σ=±80μm
累计公差 σ =±100μm
众所周知磁铁的机械中心线与磁中心线的偏移量一般比测量公差小±30μm,一般假定为零测度。这个微小值必须是标准值。要特别注意利用重合误差测量工具避免这个不明显偏移。相反,机械中心线基准测量必须适合任何磁体。这样的±50μm测量公差只是稍微大一点,然而却推动了传统的测量技术达到极限。这样就被迫去研究其它方法来测量这些数值的可靠性和精确度。
1.Introduction
One of the fundamental alignment problems encountered when building a par¬ticle accelerator is the transfer of a component’s magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements:
from magnetic centerline to mechanical centerline, and
from mechanical centerline to external fiducials.
This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented.
2.Goals
The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances The error budget for the SLC’s component to component alignment tolerance is as follows:
magnetic centerline to mechanical centerline δ=±30μm
mechanical centerline to fiducial marks δ=±50μm
fiducial marks to adjacent components δ=±80μm
TOTAL δ=±100μm
The offset between the mechanical and magnetic centerlines of well-known mag¬nets is generally smaller than the measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be mea¬sured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measure¬ment must be performed on every magnet. The tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit. Work supported by Department of Energy contract DE-AC02-76SF00515 .This has forced the search for other means of measuring these quantities reliably and accurately.
在制作粒子加速器时的基本对准问题是改变工件的磁中心线与外部基准之间的位置关系。这一步,是建立临界基准因为它对于校正误差十分重要。这个过程有两种测量方法:
1) 通过磁中心线建立机械中心线。
2) 通过机械中心线建立外部基准。
下面我们会关注论第二种测量方法,介绍两个斯坦福线性碰撞(SLC)的例子。
2.目的:
建立磁基准是为了联系磁电波与外部的基准面的位置。 有利于以后建立联系,在某种意义上这种关系必须立足于全部位置公差。
斯坦福线性碰撞实验预计公差的工件与工件之间重复定位误差SLC’s±100μm由以下公差组成:
磁中心线相对于机械中心线的公差 σ=±30μm
机械中心线相对于基准符号 σ=±50μm
基准符号相对于邻近部分 σ=±80μm
累计公差 σ =±100μm
众所周知磁铁的机械中心线与磁中心线的偏移量一般比测量公差小±30μm,一般假定为零测度。这个微小值必须是标准值。要特别注意利用重合误差测量工具避免这个不明显偏移。相反,机械中心线基准测量必须适合任何磁体。这样的±50μm测量公差只是稍微大一点,然而却推动了传统的测量技术达到极限。这样就被迫去研究其它方法来测量这些数值的可靠性和精确度。
1.Introduction
One of the fundamental alignment problems encountered when building a par¬ticle accelerator is the transfer of a component’s magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements:
from magnetic centerline to mechanical centerline, and
from mechanical centerline to external fiducials.
This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented.
2.Goals
The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances The error budget for the SLC’s component to component alignment tolerance is as follows:
magnetic centerline to mechanical centerline δ=±30μm
mechanical centerline to fiducial marks δ=±50μm
fiducial marks to adjacent components δ=±80μm
TOTAL δ=±100μm
The offset between the mechanical and magnetic centerlines of well-known mag¬nets is generally smaller than the measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be mea¬sured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measure¬ment must be performed on every magnet. The tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit. Work supported by Department of Energy contract DE-AC02-76SF00515 .This has forced the search for other means of measuring these quantities reliably and accurately.