fpga 技术介绍-------外文翻译.doc
约15页DOC格式手机打开展开
fpga 技术介绍-------外文翻译,overviewfield-programmable gate array (fpga) technology continues to gain momentum, and the worldwide fpga market is expected to grow from $1.9 billion in 2005 ...
内容介绍
此文档由会员 wanli1988go 发布
Overview
Field-programmable gate array (FPGA) technology continues to gain momentum, and the worldwide FPGA market is expected to grow from $1.9 billion in 2005 to $2.75 billion by 20101. Since its invention by Xilinx in 1984, FPGAs have gone from being simple glue logic chips to actually replacing custom application-specific integrated circuits (ASICs) and processors for signal processing and control applications. Why has this technology been so successful? This article provides an introduction to FPGAs and highlights some of the benefits that make FPGAs unique.
What is an FPGA?
At the highest level, FPGAs are reprogrammable silicon chips. Using prebuilt logic blocks and programmable routing resources, you can configure these chips to implement custom hardware functionality without ever having to pick up a breadboard or soldering iron. You develop digital computing tasks in software and compile them down to a configuration file or bitstream that contains information on how the components should be wired together. In addition, FPGAs are completely reconfigurable and instantly take on a brand new “personality” when you recompile a different configuration of circuitry. In the past, FPGA technology was only available to engineers with a deep understanding of digital hardware design. The rise of high-level design tools, however, is changing the rules of FPGA programming, with new technologies that convert graphical block diagrams or even C code into digital hardware circuitry.
FPGA chip adoption across all industries is driven by the fact that FPGAs combine the best parts of ASICs and processor-based systems. FPGAs provide hardware-timed speed and reliability, but they do not require high volumes to justify the large upfront expense of custom ASIC design. Reprogrammable silicon also has the same flexibility of software running on a processor-based system, but it is not limited by the number of processing cores available. Unlike processors, FPGAs are truly parallel in nature so different processing operations do not have to compete for the same resources. Each independent processing task is assigned to a dedicated section of the chip, and can function autonomously without any influence from other logic blocks. As a result, the performance of one part of the application is not affected when additional processing is added.
Top Five Benefits of FPGA Technology
【概述】
场域可程式化闸阵列 (FPGA) 技术正持续发展,而全世界 FPGA 市场的产值,则预估可从 2005 年的 19 亿美金提升到 2010 年的 27 亿 5 千万美金。FPGA 是在 1984 年由 Xilinx 公司所发明,从简单的胶合逻辑 (Glue logic) 晶片,演变为可取代客制的特定应用积体电路 (ASIC) 与处理器,适用于讯号处理与控制应用。为何 FPGA 技术如此成功?此篇文章将介绍 FPGA,并说明数项让 FPGA 如此独特的优点。
何谓 FPGA?
最笼统来说,FPGAs 即为可再程式化的晶片。透过预先建立的逻辑区块与可程式化路由资源,不需更改面包板或焊锡部分,即可设定这些晶片以建置客制硬体功能。使用者可于软体中开发数位运算系统 (Computing task) 并将之编译为组态档案或位元流 (Bitstream),可包含元件接线的相关资讯。此外,FPGA 完全为可重设性质,当使用者重新编译不同的电路设定时,可立刻拥有不同的特性。在过去,工程师必须深入了解数位硬体设计,才能够使用 FPGA 技术。然而,高阶设计工具的新技术可针对图形化程式区或 C 程式码,转换为数位硬体电路,即变更了 FPGA 程式设计的规则。
FPGA 整合了 ASIC 与处理器架构系统的最佳部分,使 FPGA 晶片可应用于所有产业。FPGA 具有硬体时脉的速度与可靠性,且其仅需少量即可进行作业;可降低客制化 ASIC 设计的费用。可重新程式设计的晶片,具有与软体相同的弹性,却不受限于处理核心的数量。与处理器不同的是,FPGA 为实际的平行架构,因此不同的处理作业并不需要占用相同资源。每个独立的处理作业均将指派至专属的晶片区块,不需影响其他逻辑区块即可自动产生功能。因此,当新增其他处理作业时,应用某部分的效能亦不会受到影响。
FPGA 技术的 5 大优点 :
效能– 透过硬体的平行机制,FPGA 可突破依序执行 (Sequential execution) 的固定运算,并于每时脉循环完成更多作业,以超越数位讯号处理器 (DSP) 的计算功能。BDTI 为着名的分析公司,并于某些应用中使用 DSP 解决方案,以计算 FPGA 的处理效能2。于硬体层级控制 I/O 可缩短回应时间并特定化某些功能,以更符合应用需求。
Field-programmable gate array (FPGA) technology continues to gain momentum, and the worldwide FPGA market is expected to grow from $1.9 billion in 2005 to $2.75 billion by 20101. Since its invention by Xilinx in 1984, FPGAs have gone from being simple glue logic chips to actually replacing custom application-specific integrated circuits (ASICs) and processors for signal processing and control applications. Why has this technology been so successful? This article provides an introduction to FPGAs and highlights some of the benefits that make FPGAs unique.
What is an FPGA?
At the highest level, FPGAs are reprogrammable silicon chips. Using prebuilt logic blocks and programmable routing resources, you can configure these chips to implement custom hardware functionality without ever having to pick up a breadboard or soldering iron. You develop digital computing tasks in software and compile them down to a configuration file or bitstream that contains information on how the components should be wired together. In addition, FPGAs are completely reconfigurable and instantly take on a brand new “personality” when you recompile a different configuration of circuitry. In the past, FPGA technology was only available to engineers with a deep understanding of digital hardware design. The rise of high-level design tools, however, is changing the rules of FPGA programming, with new technologies that convert graphical block diagrams or even C code into digital hardware circuitry.
FPGA chip adoption across all industries is driven by the fact that FPGAs combine the best parts of ASICs and processor-based systems. FPGAs provide hardware-timed speed and reliability, but they do not require high volumes to justify the large upfront expense of custom ASIC design. Reprogrammable silicon also has the same flexibility of software running on a processor-based system, but it is not limited by the number of processing cores available. Unlike processors, FPGAs are truly parallel in nature so different processing operations do not have to compete for the same resources. Each independent processing task is assigned to a dedicated section of the chip, and can function autonomously without any influence from other logic blocks. As a result, the performance of one part of the application is not affected when additional processing is added.
Top Five Benefits of FPGA Technology
【概述】
场域可程式化闸阵列 (FPGA) 技术正持续发展,而全世界 FPGA 市场的产值,则预估可从 2005 年的 19 亿美金提升到 2010 年的 27 亿 5 千万美金。FPGA 是在 1984 年由 Xilinx 公司所发明,从简单的胶合逻辑 (Glue logic) 晶片,演变为可取代客制的特定应用积体电路 (ASIC) 与处理器,适用于讯号处理与控制应用。为何 FPGA 技术如此成功?此篇文章将介绍 FPGA,并说明数项让 FPGA 如此独特的优点。
何谓 FPGA?
最笼统来说,FPGAs 即为可再程式化的晶片。透过预先建立的逻辑区块与可程式化路由资源,不需更改面包板或焊锡部分,即可设定这些晶片以建置客制硬体功能。使用者可于软体中开发数位运算系统 (Computing task) 并将之编译为组态档案或位元流 (Bitstream),可包含元件接线的相关资讯。此外,FPGA 完全为可重设性质,当使用者重新编译不同的电路设定时,可立刻拥有不同的特性。在过去,工程师必须深入了解数位硬体设计,才能够使用 FPGA 技术。然而,高阶设计工具的新技术可针对图形化程式区或 C 程式码,转换为数位硬体电路,即变更了 FPGA 程式设计的规则。
FPGA 整合了 ASIC 与处理器架构系统的最佳部分,使 FPGA 晶片可应用于所有产业。FPGA 具有硬体时脉的速度与可靠性,且其仅需少量即可进行作业;可降低客制化 ASIC 设计的费用。可重新程式设计的晶片,具有与软体相同的弹性,却不受限于处理核心的数量。与处理器不同的是,FPGA 为实际的平行架构,因此不同的处理作业并不需要占用相同资源。每个独立的处理作业均将指派至专属的晶片区块,不需影响其他逻辑区块即可自动产生功能。因此,当新增其他处理作业时,应用某部分的效能亦不会受到影响。
FPGA 技术的 5 大优点 :
效能– 透过硬体的平行机制,FPGA 可突破依序执行 (Sequential execution) 的固定运算,并于每时脉循环完成更多作业,以超越数位讯号处理器 (DSP) 的计算功能。BDTI 为着名的分析公司,并于某些应用中使用 DSP 解决方案,以计算 FPGA 的处理效能2。于硬体层级控制 I/O 可缩短回应时间并特定化某些功能,以更符合应用需求。