复杂脊波图像去噪--外文文献翻译.doc
约9页DOC格式手机打开展开
复杂脊波图像去噪--外文文献翻译,1 introductionwavelet transforms have been successfully used in many scientific fields such as image compression, image denoising, signal processing, computer g...
内容介绍
此文档由会员 wanli1988go 发布
1 Introduction
Wavelet transforms have been successfully used in many scientific fields such as image compression, image denoising, signal processing, computer graphics,and pattern recognition, to name only a few.Donoho and his coworkers pioneered a wavelet denoising scheme by using soft thresholding and hard thresholding. This approach appears to be a good choice for a number of applications. This is because a wavelet transform can compact the energy of the image to only a small number of large coefficients and the majority of the wavelet coeficients are very small so that they can be set to zero. The thresholding of the wavelet coeficients can be done at only the detail wavelet decomposition subbands. We keep a few low frequency wavelet subbands untouched so that they are not thresholded. It is well known that Donoho's method offers the advantages of smoothness and adaptation. However, as Coifman
1.介绍
小波变换已成功地应用于许多科学领域,如图像压缩,图像去噪,信号处理,计算机图形,IC和模式识别,仅举几例。Donoho和他的同事们提出了小波阈值去噪通过软阈值和阈值.这种方法的出现对于大量的应用程序是一个好的选择。这是因为一个小波变换能结合的能量,在一小部分的大型系数和大多数的小波系数中非常小,这样他们可以设置为零。这个阈值的小波系数是可以做到的只有细节的小波分解子带。我们有一些低频波子带不能碰触,让他们不阈值。众所周知,Donoho提出的方法的优势是光滑和自适应。然而,Coifman和Donoho指出,这种算法展示出一个视觉产出:吉布斯现象在邻近的间断。因此,他们提出对这些产出去噪通过平均抑制所有循环信号。实验结果证实单目标识别小波消噪优于没有目标识别的情况。Bui和Chen扩展了这个目标识别计划,他们发现多小波的目标识别去噪的结果比单小波去噪的结果要好。蔡和西尔弗曼提出了一种阈值方案通过采取相邻的系数。他们结果表现出的优势超于了传统的一对一小波消燥。Chen和Bui扩展这个相邻小波阈值为多小波方法。他们声称对于某些标准测试信号和真实图像相邻的多小波降噪优于相邻的单一小波去噪。陈等人提出一种图像去噪是考虑方形相邻的小波域。陈等人也尝试对图像去噪自定义小波域和阈值。实验结果表明:这两种方法产生更好的去噪效果。
Wavelet transforms have been successfully used in many scientific fields such as image compression, image denoising, signal processing, computer graphics,and pattern recognition, to name only a few.Donoho and his coworkers pioneered a wavelet denoising scheme by using soft thresholding and hard thresholding. This approach appears to be a good choice for a number of applications. This is because a wavelet transform can compact the energy of the image to only a small number of large coefficients and the majority of the wavelet coeficients are very small so that they can be set to zero. The thresholding of the wavelet coeficients can be done at only the detail wavelet decomposition subbands. We keep a few low frequency wavelet subbands untouched so that they are not thresholded. It is well known that Donoho's method offers the advantages of smoothness and adaptation. However, as Coifman
1.介绍
小波变换已成功地应用于许多科学领域,如图像压缩,图像去噪,信号处理,计算机图形,IC和模式识别,仅举几例。Donoho和他的同事们提出了小波阈值去噪通过软阈值和阈值.这种方法的出现对于大量的应用程序是一个好的选择。这是因为一个小波变换能结合的能量,在一小部分的大型系数和大多数的小波系数中非常小,这样他们可以设置为零。这个阈值的小波系数是可以做到的只有细节的小波分解子带。我们有一些低频波子带不能碰触,让他们不阈值。众所周知,Donoho提出的方法的优势是光滑和自适应。然而,Coifman和Donoho指出,这种算法展示出一个视觉产出:吉布斯现象在邻近的间断。因此,他们提出对这些产出去噪通过平均抑制所有循环信号。实验结果证实单目标识别小波消噪优于没有目标识别的情况。Bui和Chen扩展了这个目标识别计划,他们发现多小波的目标识别去噪的结果比单小波去噪的结果要好。蔡和西尔弗曼提出了一种阈值方案通过采取相邻的系数。他们结果表现出的优势超于了传统的一对一小波消燥。Chen和Bui扩展这个相邻小波阈值为多小波方法。他们声称对于某些标准测试信号和真实图像相邻的多小波降噪优于相邻的单一小波去噪。陈等人提出一种图像去噪是考虑方形相邻的小波域。陈等人也尝试对图像去噪自定义小波域和阈值。实验结果表明:这两种方法产生更好的去噪效果。