玉米芯蒸煮喷爆渣膳食纤维提取工艺及性质研究.zip

ZIP格式版权申诉手机打开展开

玉米芯蒸煮喷爆渣膳食纤维提取工艺及性质研究,摘 要膳食纤维是食品中非淀粉类多糖和木质素的合称,是一种复杂的不易被人体消化酶分解但在维持人体健康方面不可缺少的碳水化合物。由于膳食纤维的摄入量与防治便秘、肥胖症、高血脂、糖尿病等许多疾病有密切的关系,因而被许多营养学家称之为“第七营养素”。本研究以半纤维素提取后的玉米芯蒸煮喷...
编号:60-249670大小:7.74M
分类: 论文>生物/化学论文

该文档为压缩文件,包含的文件列表如下:

内容介绍

原文档由会员 风之谷的娜斯 发布

玉米芯蒸煮喷爆渣膳食纤维提取工艺及性质研究

摘 要
膳食纤维是食品中非淀粉类多糖和木质素的合称,是一种复杂的不易被人体消化酶分解但在维持人体健康方面不可缺少的碳水化合物。由于膳食纤维的摄入量与防治便秘、肥胖症、高血脂、糖尿病等许多疾病有密切的关系,因而被许多营养学家称之为“第七营养素”。
本研究以半纤维素提取后的玉米芯蒸煮喷爆渣为原料,考察了利用纤维素酶法制备可溶性膳食纤维,对其工艺条件进行研究并进行了玉米膳食纤维性质的测定。
试验首先利用单因素法考察了料液比、酶用量、提取时间和提取温度对玉米芯蒸煮喷爆渣中可溶性膳食纤维提取条件的影响,结果显示最佳反应条件为:料液比为1:16、酶用量为30U/g、提取时间为2.5h、提取温度为55℃,在此条件下,SDF制备得率为10.24%;为考察料液比、酶用量和提取时间的交互影响,试验采用三因素三水平的响应面法进一步确定玉米芯蒸煮喷爆渣膳食纤维制备的最佳工艺条件。结果显示在料液比1:16,酶用量为27.3U/g,提取时间为2.45h,最佳提取条件下膳食纤维的得率是12.1%。本研究还对膳食纤维的持水力、膨胀力、可溶性物质含量等性质进行了研究,结果显示,玉米芯蒸煮喷爆渣膳食纤维持水力为6.1g/g,膨胀力为4.5mL/g,可溶性物质含量为0.42g/100mL,此结果显示以玉米芯蒸煮喷爆渣为原料使用酶法制备可溶性膳食纤维具有很好的开发前景。
关键词:玉米芯蒸煮喷爆渣;可溶性膳食纤维;酶法;性质
Abstract
Dietary fiber(DF)is the sum of nonstarch polysaccharides and lignins in food. DF is a kind of essential carbohydrate which is not digested easily by digestive enzyme and beneficial to health. Because intake of dietary fiber may be associated with a number of diseases such as constipation, obesity, high blood fat, diabetes etc, it is called seventh nutrient by many nutritionists.
Steam explosion of corn cob residue is the material in this study, which was extracted by hemi cellulose enzyme. The conditions of preparation high-quality fiber by cellulose were extensively studied, and the monosaccharide compositions and properties of different dietary fiber samples were measured and analyzed.
Single factor were carried out to determine the optimal conditions for enzymatic SDF hydrolysis preparation were found to be solid to liquid ratio of 1:16, enzyme dosage 30U/g, extraction time of 2.5h and temperature at 55℃. The response surface analysis methodology (RSM) was used to optimize cellulose assisted extraction conditions in the extraction processes of SDF. On the base of the single-factor experiments, three independent variables, water-solid ratio, amount of enzyme and extracting time were selected as casual factors during extraction. Response surface analysis method was determined the effects of central composite experiment design. Response surface analysis method was applied to determine the effect of casual factors on the yield of SDF. The optimal experimental conditions for high-quality dietary fiber from corn by cellulose were the ratio of corn to water was 1:16, cellulose addition was 27.3U/g, extraction time was 2.45h and the rate of SDF was 12.1%.Water holding capacity, swelling capacity, soluble matter content of dietary fiber samples was also analyzed. Through experiment, it is known that water holding capacity is 6.1g/g, swelling capacity is 4.5mL/g and soluble matter content of dietary fiber samples is 0.42g/100mL water, it is indicate that SDF from steam explosion of corn cob residue is high-quality fiber.
Key words: steam explosion of corn cob residue; soluble dietary fiber; cellulase; properties

 
目 录
第一章 前言 1
1.1引言 1
1.2 膳食纤维的概念与分类 1
1.2.1 膳食纤维的定义 1
1.2.2 膳食纤维的分类 1
1.3 膳食纤维的理化性质 2
1.3.1 吸附作用 2
1.3.2 持水力和膨胀力 2
1.3.3 阳离子交换作用 2
1.4 膳食纤维的生理功能 3
1.4.1 调节血糖 3
1.4.2 抗癌作用 3
1.4.3 降低血脂的作用 3
1.4.4 降低血压的作用 3
1.5 膳食纤维的制备方法 4
1.5.1 化学分离法 4
1.5.2 酶试剂法 4
1.5.3 化学试剂和酶试剂结合法 4
1.5.4 瞬时高压技术 4
1.5.5 挤压蒸煮技术 4
1.6 膳食纤维的应用 5
1.6.1 膳食纤维在焙烤食品中的应用 5
1.6.2 膳食纤维在乳制品中的应用 5
1.6.3 膳食纤维在饮料中的应用 5
1.7 玉米芯蒸煮喷爆渣的概念及现状 5
1.7.1 蒸汽爆破的概述 5
1.7.2 高温蒸煮的概述 6
1.7.3 蒸煮喷爆的概述及意义 6
1.8 国内外膳食纤维的研究概况及发展趋势 6
1.8.1 膳食纤维的研究概况 6
1.8.2 膳食纤维的发展趋势 7
1.9 本课题研究的意义及主要内容 7
1.9.1 研究意义 7
1.9.2 主要研究内容 8
第二章 材料与方法 9
2.1 实验材料与仪器 9
2.1.1 实验材料 9
2.1.2 实验仪器 9
2.2 实验方法 10
2.2.1 纤维素酶活力的测定 10
2.2.2 工艺流程 12
2.2.3 水溶性膳食纤维的原理及提取方法 12
2.2.4 单因素实验设计 12
2.2.5 响应面法优化玉米芯蒸煮喷爆渣膳食纤维的提取工艺 13
2.2.6 玉米芯蒸煮喷爆渣膳食纤维性质的研究 13
第三章 结果与讨论 15
3.1 纤维素酶活的测定结果 15
3.1.1 标准曲线的绘制 15
3.1.2 酶活力的测定结果 15
3.2 单因素试验结果 15
3.2.1 膳食纤维最佳提取料液比的确定 15
3.2.2 膳食纤维最佳提取酶用量的确定 16
3.2.3 不同提取时间对SDF得率的影响 17
3.2.4 不同提取温度对SDF得率的影响 18
3.3 响应面法优化膳食纤维的实验设计 19
3.4 Box-Benhnken实验响应面分析结果 21
3.5 持水力实验结果及分析 23
3.6 膨胀力实验结果及分析 24
3.7 可溶性物质实验结果及分析 24
第四章 结论与展望 25
4.1 结论 25
4.2 创新点 25
4.3 展望 25
致谢 26
参考文献 27
附录 29