概率神经网络---外文翻译(原文+译文).rar
概率神经网络---外文翻译(原文+译文),摘要:以指数函数替代神经网络中常用的s形激活函数,进而构造出能够计算非线性判别边界的概率神经网络(pnn),该判定边界接近于贝叶斯最佳判定面。还讨论了拥有类似性质的其他激活函数。所提出的这种4层神经网络能够把任何输入模式映射到多个类别。如果能取得新数据的话,可以使用新数据实时地修改判定边界,并可以使用完全并行运行的人工...
该文档为压缩文件,包含的文件列表如下:
内容介绍
原文档由会员 wanli1988go 发布摘要:以指数函数替代神经网络中常用的S形激活函数,进而构造出能够计算非线性判别边界的概率神经网络(PNN),该判定边界接近于贝叶斯最佳判定面。还讨论了拥有类似性质的其他激活函数。所提出的这种4层神经网络能够把任何输入模式映射到多个类别。如果能取得新数据的话,可以使用新数据实时地修改判定边界,并可以使用完全并行运行的人工“神经元”付诸实现。还为估计类别的出现概率和可靠性,以及做判别作好准备。对于反向传播增加的适应时间占总计算时间的重大部分的问题,这种方法显示出非常快速的优点。PNN范式比反向传播快200,000倍。
关键词:神经网格,概率密度函数,并行处理机,“神经元”,模式识别,Parzen窗口,贝叶斯策略,相联存储器
1. 动机
神经网络常用来依据向实例学习进行模式分类。不同的神经网格范式(paradigm)使用不同的学习规则,但都以某种方式,根据一组训练样本确定模式的统计量,然后根据这些统计量进行新模式分类。
通用方法如反向传播,使用探试法获得基础的类别统计量。探试法通常包含对系统参数的许多小的改进,逐渐提高系统的性能。除了训练需要长的计算时间外,还表明,反向传播增加的适应近似法对错误的最小值很敏感。为了改进这种方法,找到了基于己确立的统计原理的分类方法。
可以表明,尽管最终得到的网络在结构上类似于反向传播,且其主要区别在于以统计方法推导的激活函数替代S形激活函数,但这个网络具有的特点是:在某些易满足的条件下,以PNN实现的判别边界渐进地逼近贝叶斯最佳判定面。
为了了解PNN范式的基础,通常从贝叶斯判定策略以及概率密度函数的非参数估计的讨论开始。之后可以表明,这种统计方法如何映射到前馈神经网络结构,网络结构是以许多简单处理器(神经元)代表的,所有处理器都是并行运行。