车辆专业外文文献翻译-----基于有限元方法的陀螺仪的盘型制动系统的尖叫分析.doc
约40页DOC格式手机打开展开
车辆专业外文文献翻译-----基于有限元方法的陀螺仪的盘型制动系统的尖叫分析,【摘要】本文对一辆车的制动系统中旋转阀瓣接触两个固定垫的动力失稳性进行了研究。在现行的近似几何中,盘被有限元分析法以帽盘型结构为模型。从参考坐标系和移动坐标系见的坐标变换,对盘和垫之间的接触运动学进行了阐述。通过引入统一的二维网的方法来构造阀瓣相应的陀螺矩阵。陀螺仪的非保守性制动系统的动力不稳定性是对系统参数的数值预测...
内容介绍
此文档由会员 wanli1988go 发布
【摘要】
本文对一辆车的制动系统中旋转阀瓣接触两个固定垫的动力失稳性进行了研究。在现行的近似几何中,盘被有限元分析法以帽盘型结构为模型。从参考坐标系和移动坐标系见的坐标变换,对盘和垫之间的接触运动学进行了阐述。通过引入统一的二维网的方法来构造阀瓣相应的陀螺矩阵。陀螺仪的非保守性制动系统的动力不稳定性是对系统参数的数值预测。结果表明, 尖叫声倾向于转速,转速取决于参与尖叫声模式下的振动模式。而且,它强调摩擦系数的负斜率对在盘的面内扭转模式下产生尖叫声起着至关重要的作用。
【关键词】
陀螺仪;盘型制动;制动尖叫;耦合模式
1. 介绍
盘式制动尖叫已经被许多学者研究了数十年。通过对尖叫机械的研究积累了许多有价值的信息。Kinkaid等[1]提供了关于各种盘型制动尖叫研究的概述。Ouyang 等[2]发行了以汽车盘型制动尖叫的数值分析为集中研究的评论性文章。他们显示一个主要研究制动尖叫的方法,是线性稳定分析。从线性化的运动微分方程来看,真正的部分特征值被计算出来,用于决定均衡的稳定性。在文献中,有两个关于线性尖叫分析的主要方向:静态平稳的复杂特征值分析——滑动平稳[3–8]和旋转制动系统的稳定性分析 [9–12,14]。
固定盘和垫的静态的滑动稳定的稳定性分析提供尖叫原理作为频繁摩擦领域里的合并模式的特性。Huang等[6]使用本征值摄动法发展必要的条件没有直接的本征结果。Kang等[7]推导了盘对之间的合并模式的封闭解。由于固定盘假设,有限元(FE)方法被容易地应用于上面提到的评论性文章[2]. 同样的,Cao 等[13]从一个有移动垫和固定盘的FE盘型制动模型模型研究了移动荷载效应,因此,陀螺仪的影响被忽视了。Giannini等[15,16]验证其合并模式行为,通过使用实验尖叫频率作为尖叫开始。
另一方面,旋转盘型制动的稳定性已经调查了分析的方法。旋转盘型制动系统已经模拟了一个环形物[10]和一个环形板[12]恰当的与两个垫的接触,并且环形板受制于分布式摩擦牵引力[9]。考虑陀螺仪的影响,真正的部分特征值对系统参数的影响已经被解决了。尽管由于复杂的旋转盘建模,旋转(FE)盘型制动建模仍旧没有被发展。
最近,Kang等[14] 用综合法开发了一种理论盘型制动模型。盘型制动模型由一个旋转的环形板接触两个固定环的扇形板组成。综合分析法解释了被耦合模式和
Abstract
In this paper, the dynamic instability of a car brake system with a rotating disc in contact with two stationary pads is studied. For actual geometric approximation, the disc is modeled as a hat-disc shape structure by the finite element method. From a coordinate transformation between the reference and moving coordinate systems, the contact kinematics between the disc and pads is described. The corresponding gyroscopic matrix of the disc is constructed by introducing the uniform planar-mesh method. The dynamic instability of a gyroscopic non-conservative brake system is numerically predicted with respect to system parameters. The results show that the squeal propensity for rotation speed depends on the vibration modes participating in squeal modes. Moreover, it is highlighted that the negative slope of friction coefficient takes an important role in generating squeal in the in-plane torsion mode of the disc.
Keywords Gyroscopic; Disc brake; Brake squeal; Mode-coupling
1. Introduction
Disc brake squeal has been investigated by many researchers for several decades. Much valuable information on squeal mechanisms has been accumulated throughout the research. Kinkaid et al. [1] presented the overview on the various disc brake squeal studies. Ouyang et al. [2] published the review article focused on the numerical analysis of automotive disc brake squeal. They have shown that one major approach on brake squeal study is the linear stability analysis. From the linearized equations of motion, the real parts of eigenvalues have been calculated for determining the equilibrium stability. In the literature, there are two major directions on the linear squeal analysis: the complex eigenvalue analysis of the static steady- sliding equilibrium [3–8] and the stability analysis of rotating brake system [9–12,14]. The stability analysis at the static steady-sliding equilibrium of the stationary disc and pads provides the squeal mechanism as mode-merging character in the friction–frequency domain. Parti- cularly, Huang et al. [6] used the eigenvalue perturbation method to develop the necessary condition for mode-merging without the direct eigensolutions. Kang et al. [7] derived the closed-form solution for mode-merging
本文对一辆车的制动系统中旋转阀瓣接触两个固定垫的动力失稳性进行了研究。在现行的近似几何中,盘被有限元分析法以帽盘型结构为模型。从参考坐标系和移动坐标系见的坐标变换,对盘和垫之间的接触运动学进行了阐述。通过引入统一的二维网的方法来构造阀瓣相应的陀螺矩阵。陀螺仪的非保守性制动系统的动力不稳定性是对系统参数的数值预测。结果表明, 尖叫声倾向于转速,转速取决于参与尖叫声模式下的振动模式。而且,它强调摩擦系数的负斜率对在盘的面内扭转模式下产生尖叫声起着至关重要的作用。
【关键词】
陀螺仪;盘型制动;制动尖叫;耦合模式
1. 介绍
盘式制动尖叫已经被许多学者研究了数十年。通过对尖叫机械的研究积累了许多有价值的信息。Kinkaid等[1]提供了关于各种盘型制动尖叫研究的概述。Ouyang 等[2]发行了以汽车盘型制动尖叫的数值分析为集中研究的评论性文章。他们显示一个主要研究制动尖叫的方法,是线性稳定分析。从线性化的运动微分方程来看,真正的部分特征值被计算出来,用于决定均衡的稳定性。在文献中,有两个关于线性尖叫分析的主要方向:静态平稳的复杂特征值分析——滑动平稳[3–8]和旋转制动系统的稳定性分析 [9–12,14]。
固定盘和垫的静态的滑动稳定的稳定性分析提供尖叫原理作为频繁摩擦领域里的合并模式的特性。Huang等[6]使用本征值摄动法发展必要的条件没有直接的本征结果。Kang等[7]推导了盘对之间的合并模式的封闭解。由于固定盘假设,有限元(FE)方法被容易地应用于上面提到的评论性文章[2]. 同样的,Cao 等[13]从一个有移动垫和固定盘的FE盘型制动模型模型研究了移动荷载效应,因此,陀螺仪的影响被忽视了。Giannini等[15,16]验证其合并模式行为,通过使用实验尖叫频率作为尖叫开始。
另一方面,旋转盘型制动的稳定性已经调查了分析的方法。旋转盘型制动系统已经模拟了一个环形物[10]和一个环形板[12]恰当的与两个垫的接触,并且环形板受制于分布式摩擦牵引力[9]。考虑陀螺仪的影响,真正的部分特征值对系统参数的影响已经被解决了。尽管由于复杂的旋转盘建模,旋转(FE)盘型制动建模仍旧没有被发展。
最近,Kang等[14] 用综合法开发了一种理论盘型制动模型。盘型制动模型由一个旋转的环形板接触两个固定环的扇形板组成。综合分析法解释了被耦合模式和
Abstract
In this paper, the dynamic instability of a car brake system with a rotating disc in contact with two stationary pads is studied. For actual geometric approximation, the disc is modeled as a hat-disc shape structure by the finite element method. From a coordinate transformation between the reference and moving coordinate systems, the contact kinematics between the disc and pads is described. The corresponding gyroscopic matrix of the disc is constructed by introducing the uniform planar-mesh method. The dynamic instability of a gyroscopic non-conservative brake system is numerically predicted with respect to system parameters. The results show that the squeal propensity for rotation speed depends on the vibration modes participating in squeal modes. Moreover, it is highlighted that the negative slope of friction coefficient takes an important role in generating squeal in the in-plane torsion mode of the disc.
Keywords Gyroscopic; Disc brake; Brake squeal; Mode-coupling
1. Introduction
Disc brake squeal has been investigated by many researchers for several decades. Much valuable information on squeal mechanisms has been accumulated throughout the research. Kinkaid et al. [1] presented the overview on the various disc brake squeal studies. Ouyang et al. [2] published the review article focused on the numerical analysis of automotive disc brake squeal. They have shown that one major approach on brake squeal study is the linear stability analysis. From the linearized equations of motion, the real parts of eigenvalues have been calculated for determining the equilibrium stability. In the literature, there are two major directions on the linear squeal analysis: the complex eigenvalue analysis of the static steady- sliding equilibrium [3–8] and the stability analysis of rotating brake system [9–12,14]. The stability analysis at the static steady-sliding equilibrium of the stationary disc and pads provides the squeal mechanism as mode-merging character in the friction–frequency domain. Parti- cularly, Huang et al. [6] used the eigenvalue perturbation method to develop the necessary condition for mode-merging without the direct eigensolutions. Kang et al. [7] derived the closed-form solution for mode-merging