数学外文翻译-------幂级数的展开及其应用.doc
约9页DOC格式手机打开展开
数学外文翻译-------幂级数的展开及其应用,in the previous section, we discuss the convergence of power series, in its convergence region, the power series always converges to a function. for the simple ...
内容介绍
此文档由会员 wanli1988go 发布
In the previous section, we discuss the convergence of power series, in its convergence region, the power series always converges to a function. For the simple power series, but also with itemized derivative, or quadrature methods, find this and function. This section will discuss another issue, for an arbitrary function , can be expanded in a power series, and launched into.
Whether the power series as and function? The following discussion will address this issue.
1 Maclaurin (Maclaurin) formula
Polynomial power series can be seen as an extension of reality, so consider the function can expand into power series, you can from the function and polynomials start to solve this problem. To this end, to give here without proof the following formula.
在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数 ,能否将其展开成一个幂级数,以及展开成的幂级数是否以 为和函数?下面的讨论将解决这一问题.
一、 马克劳林(Maclaurin)公式
幂级数实际上可以视为多项式的延伸,因此在考虑函数 能否展开成幂级数时,可以从函数 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.
泰勒(Taylor)公式 如果函数 在 的某一邻域内,有直到 阶的导数,则在这个邻域内有如下公式:
,(951)
Whether the power series as and function? The following discussion will address this issue.
1 Maclaurin (Maclaurin) formula
Polynomial power series can be seen as an extension of reality, so consider the function can expand into power series, you can from the function and polynomials start to solve this problem. To this end, to give here without proof the following formula.
在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数 ,能否将其展开成一个幂级数,以及展开成的幂级数是否以 为和函数?下面的讨论将解决这一问题.
一、 马克劳林(Maclaurin)公式
幂级数实际上可以视为多项式的延伸,因此在考虑函数 能否展开成幂级数时,可以从函数 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.
泰勒(Taylor)公式 如果函数 在 的某一邻域内,有直到 阶的导数,则在这个邻域内有如下公式:
,(951)