外文翻译中文译文 -------对由ansys开发的大型工程模型的降阶.doc

约11页DOC格式手机打开展开

外文翻译中文译文 -------对由ansys开发的大型工程模型的降阶,摘要 工程师能够在ansys开发的有限元模型中运用现有的软件实现现代模型降阶技术。我们着于一个人如何独立的从在ansys和c ++上实现的执行模型中提取所需的信息,而不用依靠特别的专业人士,我们将利用与结构力学和热力学有限元模型相关的实例来讨论计算成本。1.介绍 大型线性动态系统模型降阶已经是相当成熟的领域[1]。许多...
编号:12-272046大小:428.50K
分类: 论文>外文翻译

内容介绍

此文档由会员 wanli1988go 发布

摘要 工程师能够在ANSYS开发的有限元模型中运用现有的软件实现现代模型降阶技术。我们着于一个人如何独立的从在ANSYS和C ++上实现的执行模型中提取所需的信息,而不用依靠特别的专业人士,我们将利用与结构力学和热力学有限元模型相关的实例来讨论计算成本。
1.介绍
大型线性动态系统模型降阶已经是相当成熟的领域[1]。许多论文(见参考文献[2])指出,模型降价的优势已在各种科学和工程应用上被证实。我们目前的工作是集中讨论工程师如何将该技术与现有的商业有限元软件相结合,以达到如下目的:
— 加快对瞬变电压、谐波的分析;
— 自动生成系统级仿真的紧凑模型;
— 在设计阶段纳入有限元程序包。
通常大规模动态系统模型降阶第一步如下
Ex˙=Ax+Bu (1.1)
y=Cx
其中A和E是系统矩阵,B是输入矩阵,C是输出矩阵。模型降阶的目的是产生一个低维式以逼近(1.1), Erz=Arz.+Bru


Abstract. We present the software mor4ansysthat allows engineers to employ modern model reduction techniques to finite element models developed in ANSYS. We focus on how one extracts the required information from ANSYS and performs model reduction in a C++ implementation that is not dependent on a particular sparse solver. We discuss the computational cost with examples related to structural mechanics and thermal finite element models.
1.Introduction
The model order reduction of linear large-scale dynamic systems is already quite an established area [1]. In many papers (see references in [2]), advantages of model reduction have been demonstrated for a variety of scientific and engineering applications. In the present work, we focus on how engineers can combine this technique with existing commercial finite element software in order to
– Speed up a transient or harmonic analysis,
– Generate automatically compact models for system-level simulation,
– Incorporate finite element packages during the design phase.
Model reduction is conventionally applied to a large-scale dynamic system of the first order as follows
Ex˙=Ax+Bu (1.1)
y=Cx
where Aand E are system matrices, Bis the input matrix, Cis the output matrix. The aim of model reduction is to generate a low-dimensional approximation to (1.1) in a similar form
Erz=Arz.+Bru (1.2)
Y=Crz.