肢体机制机器人避障的虚拟阻抗模型----外文翻译.doc

约14页DOC格式手机打开展开

肢体机制机器人避障的虚拟阻抗模型----外文翻译,摘要:一个避障方法使用一个虚拟阻抗墙系统,提出一种多有腿的机器人。摆动腿使用合规控制使软接触,避免与物体碰撞,这样机器人保持移动方向尽可能而摆动腿保持优先操作区域。首选的操作区域与一个虚拟阻抗墙包围。当腿经过阈值的首选操作区域,运动方向是通过虚拟斥力从虚拟阻抗墙避免工作区限制。此外,模式识别技术使用支持向量机实现估计接...
编号:11-272208大小:75.50K
分类: 论文>外文翻译

内容介绍

此文档由会员 wanli1988go 发布

摘要:一个避障方法使用一个虚拟阻抗墙系统,提出一种多有腿的机器人。摆动腿使用合规控制使软接触,避免与物体碰撞,这样机器人保持移动方向尽可能而摆动腿保持优先操作区域。首选的操作区域与一个虚拟阻抗墙包围。当腿经过阈值的首选操作区域,运动方向是通过虚拟斥力从虚拟阻抗墙避免工作区限制。此外,模式识别技术使用支持向量机实现估计接触点之间在物体和身体通过使用数据集的误差每条腿。虚拟阻抗字段被设置在估计接触位置的角度直接回避。机器人是推动和转动了虚拟斥力从阻抗场。这些被动运动从虚拟阻抗模型可以提供一个好的解决方案,避免控制对象。的可行性提出了避障方法模拟和实验表明使用实际的机器人。
1,介绍
小机器人的发展为狭小的空间增加了先进的年检需要运动。最近,许多研究人员已经开发出轮或履带式机器人进行检查,这些机器人似乎提供了一个很好的解决方案关于能源消费和缓解的机制。然而,研究运动的步态和多连杆机器人还没有完成,这些机器人的可行性有望在未来证明。
例如,尽管腿机器人可以执行全方位的运动,大多数轮/履带机器人不能全方位移动方向不改变。在遥感领域,这些机器人还可以使用内部传感器的致动器作为触角检测最近的障碍。例如,相机和激光测距仪(LRFs)[1]-[11]是有用的但是有很多盲点,所以他们的检测区域可辅以触角。本研究是为了促进进行实际应用的步态运动。本文提出了一种先进的基于多支走策略迁移和触觉传感的运动在一个狭小的空间。图1显示了一个示例的一个情况,呼吁狭小的空间运动。狭窄的空间精度要求严格的搭档障碍检测,很难测量面积接近机器人的身体使用外部传感器。这个结果在一个

Abstract— An obstacle avoidance method using a virtual impedance wall is proposed for a multi-legged robot. The swing legs use compliance control to make soft contact and avoid colliding with objects, so that the robot maintains the moving direction as far as possible while the swing legs maintain a preferred operating region. The preferred operating region is surrounded with a virtual impedance wall. When the leg passes over the threshold of the preferred operating region, the moving direction is modified by the virtual repulsive force from the virtual impedance wall to avoid the workspace limitation. Moreover, the pattern recognition technique using the support vector machine is implemented for estimating the contact point between the object and the body by using the data set of the error of each leg. The virtual impedance field is set at the estimated contact
position to direct the aspect of avoidance. The robot is pushed and rotated by the virtual repulsive force from the impedance field. These passive motions from the virtual impedance model can provide a good solution for object avoidance control. The feasibility of the proposed obstacle avoidance method is shown by simulations and experiments using actual robots.
I. INTRODUCTION
The development of small robots for narrow space inspection increases the need of advanced locomotion. Recently, numerous researchers have developed wheel or crawler type robots for inspection, and these robots appear to provide a very good solution regarding energy consumption and ease of mechanism. However, research on the motion of legged and multi-link robots is not yet complete, and the feasibility of these robots is expected to be demonstrated in the future. For example, although legged robots can perform omni-directional locomotion, most wheel/crawler robots cannot move omnidirectionally without changing direction. In the field of sensing, these robots can also use internal sensors of actuators as feelers for detecting the closest obstacles. For example,cameras and Laser Range Finders (LRFs) [1]-[11] are useful but have numerous blind spots, so their detection areas can be complemented by feelers. The present study is conducted in order to promote the practical application of legged locomotion.
The paper proposes an advanced walking strategy based on multi-legged locomotion and tactile