多媒体,信息检索,环境监测,检测系统[外文翻译英文+中文].doc

约41页DOC格式手机打开展开

多媒体,信息检索,环境监测,检测系统[外文翻译英文+中文],多媒体信息检索与环境监测:共享数据融合的观点alan f. smeaton a,⁎, edel o'connor b,fiona regan ca洞察数据分析中心和计算机学院,都柏林城市大学,格拉斯内文,都柏林 9,爱尔兰b清晰度:传感器网络技术中心,爱尔兰都柏林城市大学,格拉斯内文,都柏林9,爱尔兰cme...
编号:36-329656大小:259.00K
分类: 论文>外文翻译

内容介绍

此文档由会员 jiji888 发布

多媒体信息检索与环境监测:共享数据融合的观点
Alan F. Smeaton a,⁎, Edel O'Connor b,Fiona Regan c

A 洞察数据分析中心和计算机学院,都柏林城市大学,格拉斯内文,都柏林 9,爱尔兰
b 清晰度:传感器网络技术中心,爱尔兰都柏林城市大学,格拉斯内文,都柏林9,爱尔兰
C MESTECH:海洋环境遥感技术中心,都柏林城市大学,格拉斯内文,都柏林9,爱尔兰
文章信息
文章历史:
2013年1月22日收到
2013年7月16日收到修改稿
2013年10月21日接受
可在网上查询XXXX

关键词: 传感器数据融合 多媒体信息检索 信任和声誉框架 环境监测
摘要:基于计算机的远程监控我们的环境正日益基础上,结合从原位传感器从远程来源的数据,如卫星图像或闭路电视得出的数据。在这样的部署中,需要连续地监视各传感器的数据流的准确性,以便我们可以考虑传感器,或错误的突发故障,由于校准驱动器或生物结垢。在多媒体信息检索(MMIR),我们通过多媒体的文物,如视频节目的档案搜索,通过实现几个独立的检索系统或代理,我们结合每一个检索代理的输出,以产生一个总排名。在本文中,我们借鉴这些看似完全不同的应用程序之间的相似之处,并显示他们如何分享几个相似之处。在环境监测的情况下,我们还需要一些机制通过它我们可以建立信任,促进各传感器的声誉,尽管这是我们不需要在MMIR 。在本文中,我们提出,我们已经开发出一种信任和声誉框架大纲和部署用于监视在异构传感器网络的传感器的性能。



Multimedia information retrieva l and environmental monitoring: Shared perspectives on data fusion
Alan F. Smeatona,⁎, Edel O'Connorb, Fiona Reganc
A Insight Centre for Data Analytics and School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland
B CLARITY: Centre for Sensor Web Technologies, Dublin City University, Glasnevin, Dublin 9, Ireland
C MESTECH: Marine Environmental Sensing Technology Hub, Dublin City University, Glasnevin, Dublin 9, Ireland

a r t i c l e i n f o
Article history:
Received 22 January 2013
Received in revised form 16 July 2013
Accepted 21 October 2013
Available online xxxx
Keywords:
Sensor data fusion
Multimedia information retrieva l
Trust and reputation framework
Environmental monitoring

a b s t r a c t
Computer-based remote monitoring of our environment is increasingly based on combining data derived from in-situ-sensors with data derived from remote sources, such as satellite images or CCTV. In such deployments it is necessary to continuously monitor the accuracy of each of the sensor data streams so that we can account for sudden failures of sensors, or errors due to calibration drive or biofouling. In multimedia information retrieva l (MMIR), we search through archives of multimedia artefacts like video programs, by implementing several independent retrieva l systems or agents, and we combine the outputs of each retrieva l agent in order to generate an overall ranking. In this paper we draw parallels between these seemingly very different applications and show how they share several similarities. In the case of environmental monitoring we also need some mechanism by which we can establish the trust and reputation of each contributing sensor, though this is something we do not need in MMIR. In this paper we present an outline of a trust and reputation framework we have developed and deployed for monitoring the performance of sensors in a heterogeneous sensor network.