基于dsp的电动车多轮驱电机的协调控制.doc
约67页DOC格式手机打开展开
基于dsp的电动车多轮驱电机的协调控制,基于dsp的电动车多轮驱电机的协调控制本文为硕士毕业论文,共67字数:29072摘 要承载、转向和牵引是地面运行车辆的三大基本功能。目前纯电动汽车正在向多轮驱方向发展,这种系统至少含有两台驱动电机,通过对多电机的协调控制,不仅可实现电动车的双向牵引,而且为同时实现转向协调提供了可能。为此,本文围绕多轮驱电机的协调控制技...
内容介绍
此文档由会员 阿辉vs阿娟 发布
基于DSP的电动车多轮驱电机的协调控制
本文为硕士毕业论文,共67 字数:29072
摘 要
承载、转向和牵引是地面运行车辆的三大基本功能。目前纯电动汽车正在向多轮驱方向发展,这种系统至少含有两台驱动电机,通过对多电机的协调控制,不仅可实现电动车的双向牵引,而且为同时实现转向协调提供了可能。为此,本文围绕多轮驱电机的协调控制技术进行相关的理论与试验研究。
首先,对永磁无刷直流电动机的工作原理与特性进行分析;借鉴经典汽车技术,系统的研究了轮驱式电动车的控制功能及实现方法;给出一个由人工转向轮+两个驱动轮组成的电动三轮车概念模型,并提出了一种基于双电机独立驱动、电流指令灵活分配的控制系统策略。该系统接收电流调节手把指令和电流分配指令,通过双电机电流信号分配及闭环控制实现转矩协调控制,使电动车在牵引驱动的同时,实现转向协调控制。
其次,针对上述电动三轮车的控制需求,在对电机功率驱动电路结构与控制方式、电流及转子位置信号检测方法进行比较分析的基础上,设计了无刷直流电动机的硬件驱动电路,搭建了以TMS320F2812开发板为主控制器的双电机协调控制系统硬件试验研究平台;分析了控制系统软件整体需求,编写了系统输入、输出及控制模块软件,完成了双电机协调控制系统软件设计。
最后,在试验研究平台上,完成了系统软件与硬件联合调试。通过电机开环调试,标定了速度检测子系统;单独施加恒定激励电流,标定了电流检测子系统;外加可变负载,验证了电机电流闭环控制功能。调试结果表明,控制系统可实现电机启动、调速、正反转和电流闭环控制。
全部试验结果表明,基于DSP的电动车多轮驱电机协调控制可在牵引驱动的同时实现转向协调,采用成熟的电流闭环控制技术,以软件代替机械差速器的功能,可供多轮驱电动汽车的研究参考。
关键词:电动汽车;多轮驱;DSP;电流闭环控制
Abstract
Three basic functions of the ground running vehicles are bearing, steering and traction. At present, the trend of the pure electric automobiles is the multiwheel drive. This kind of system contains two driven motors at least. By coordinating control of the motors, the bidirectional traction of the electric vehicles can be realized, and coordinating control for the steering could become possible at the same time. Therefore, the related theory and experiment about coordinating control technology of the multiwheel drive has been researched in this paper.
At first, the working principle and characteristic for the permanent magnet brushless dc motor have been analyzed. According to the technique of traditional automobile, the control functions and realization methods of wheel-driven electric vehicle are researched systematically. The conceptual model of the electric tricycle composed of artificial steering wheel and two driven wheels is presented, and the system control strategy based on independent dual motor driven and flexible current instructions assignment has been proposed. The current adjustment handle instructions and current assignment instructions are received in this system, and coordinating control for torque is realized by assignment and closed-loop control for current of the dual motors. Furthermore, steering coordinating control can be realized, while traction of the electric automobiles can be completed.
Secondly, for the control need of the electric tricycle mentioned above, the hardware driven circuit of magnet brushless dc motor has been designed on the basis of comparing for power driven circuit structure, control means, mehod of current and rotor’s position signal detection of motor. And the hardware test and research platform of the dual-motor coordinating control system taking TMS320F2812 as the main controller has been builded up. The entire demand of software control system has been analyzed and input modules, output modules and control modules of system have been programmed. The software design of the dual-motor coordinating control system has been accomplished at last.
Finally, system software and hardware joint debug has been completed on the experimental study platform. Speed detection subsystem has been calibrated by the motor open-loop tests. Current detection subsystem has been calibrated by excitation permanent current imposed separately. And current closed-loop control of motor has been completed. The test results show that the control system can realize starting, speed adjustment, clockwise and anti-clockwise running and current closed-loop control functions of motor.
All the test results show that the coordinating control for multiple driven motors of the electric vehicle based on DSP can realize coordinating control for the steering, while traction of the electric automobiles can be completed. Mature technique of current closed-loop control is adopted, and the function of differential mechanism can be replaced by software module, which gives the reference to the study of multiwheel electric vehicles.
Keywords: Electric Vehicle; Multiwheel Drive; DSP; Current Closed-loop Control;
目 录
第1章 绪 论 1
1.1 课题研究背景及意义 1
1.2 多轮驱协调控制的现状 1
1.3 论文完成的主要工作 3
第2章 电动车控制技术研究 4
2.1 无刷直流电动机分析 4
2.1.1 工作原理 4
2.1.2 数学模型 6
2.1.3 建模仿真 8
2.2 电动车控制功能及实现 11
2.3 电动三轮车概念模型及策略 14
2.3.1 电动三轮车概念模型 14
2.3.2 双电机协调控制策略 15
2.4 研究技术路线 17
2.5 本章小结 17
第3章 电气控制系统硬件设计 18
3.1 电气控制系统方案研究 18
3.1.1 功率桥电路与控制 18
3.1.2 电机电流检测方案 21
3.1.3 转子位置信号检测 21
3.2 控制调节系统研究 22
3.2.1 控制调节系统需求 22
3.2.2 硬件解决方案 22
3.3 电气控制系统的实现 23
3.3.1 电流控制输入电路 23
3.3.2 PWM信号隔离电路 24
3.3.3 电机功率驱动电路 24
3.3.4 转子位置检测电路 28
3.3.5 电机电流检测电路 28
3.4 控制系统可靠性设计 30
3.4.1 电源去耦 30
3.4.2 信号隔离 31
3.4.3 布线线宽 31
3.5 本章小结 32
第4章 控制系统应用软件设计 33
4.1 软件总体分析 33
4.2 输入模块软件设计 34
4.2.1 控制信号输入 34
4.2.2 转子位置检测 38
4.2.3 电机转速测量 38
4.2.4 电压电流采集 41
4.3 输出模块软件设计 42
4.4 控制模块软件设计 45
4.5 本章小结 47
第5章 系统调试与试验结果分析 48
5.1 试验研究平台介绍 48
5.2 电机开环调试 49
5.2.1 转速标定 49
5.2.2 转速/电流特性 50
5.3 电流检测系统标定 51
5.4 电流闭环系统调试 52
结 论 55
致 谢 56
参考文献 57
参考文献
[1] 孙志红等.坦克电传动系统的发展和展望.四川兵工学报,2005,第1期:12-14
[2] 吕勤等.基于工控机+DSP的移动机器人控制系统设计.电气传动自动化,2009,第31卷第1期:43-46
[3] 徐宗祥.我国电力机车的发展回顾.中国铁路,2001,第2期:12-14
[4] 陈清泉.电动汽车及混合动力汽车的发展现状.陈清泉院士论文选集—现代电动车、电机驱动及电力电子技术.北京:机械工业出版社,2005:43-64
[5] 陈清泉.电动汽车的现状及发展趋势.陈清泉院士论文选集—现代电动车、电机驱动及电力电子技术.北京:机械工业出版社,2005:6-13
[6] S. Gair. Motor Drives and Propulsion Systems for EVs, 1998, The Institution of Electrical Engineers
[7] 陈清泉等.21世纪的绿色交通工具—电动车.北京:清华大学出版社,2000
[8] 李兴虎.电动汽车概论.北京:北京理工大学出版社,2005
[9] 陈清泉等.现代电动汽车技术.北京:北京理工大学出版社,2002
[10] 宁国宝.电动车轮边驱动系统的发展.新能源汽车,2006.11,2-6
[11] 王玲珑等.轮毂式电动汽车驱动系统的研究与开发.汽车电器,2007,第3期,7-10
[12] Ju-Sang Lee,Young-Jac Ryoo,Young-Cheol Lim. A Neural network model of electric differential system for electric vehicle,26th Annual Confernece of the IEEE,2000,1:83-87
[13] 郭建龙等.电动车用多电机独立轮式驱动的协调运行分析.微特电机,2007,第1期
[14] Peng Xu. A Novel Fore Axle Whole-turning Driving and Control System for Direct-Wheel-Driven Electric Vehicle,Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China September 2008:705-709
[15] Guilin Tao. A Novel Driving and Control System for Direct-Wheel- Driven Electric Vehicle, IEEE TRANSACTIONS ON MAGNETICS, VOL.41, NO.1, JANUARY 2005
本文为硕士毕业论文,共67 字数:29072
摘 要
承载、转向和牵引是地面运行车辆的三大基本功能。目前纯电动汽车正在向多轮驱方向发展,这种系统至少含有两台驱动电机,通过对多电机的协调控制,不仅可实现电动车的双向牵引,而且为同时实现转向协调提供了可能。为此,本文围绕多轮驱电机的协调控制技术进行相关的理论与试验研究。
首先,对永磁无刷直流电动机的工作原理与特性进行分析;借鉴经典汽车技术,系统的研究了轮驱式电动车的控制功能及实现方法;给出一个由人工转向轮+两个驱动轮组成的电动三轮车概念模型,并提出了一种基于双电机独立驱动、电流指令灵活分配的控制系统策略。该系统接收电流调节手把指令和电流分配指令,通过双电机电流信号分配及闭环控制实现转矩协调控制,使电动车在牵引驱动的同时,实现转向协调控制。
其次,针对上述电动三轮车的控制需求,在对电机功率驱动电路结构与控制方式、电流及转子位置信号检测方法进行比较分析的基础上,设计了无刷直流电动机的硬件驱动电路,搭建了以TMS320F2812开发板为主控制器的双电机协调控制系统硬件试验研究平台;分析了控制系统软件整体需求,编写了系统输入、输出及控制模块软件,完成了双电机协调控制系统软件设计。
最后,在试验研究平台上,完成了系统软件与硬件联合调试。通过电机开环调试,标定了速度检测子系统;单独施加恒定激励电流,标定了电流检测子系统;外加可变负载,验证了电机电流闭环控制功能。调试结果表明,控制系统可实现电机启动、调速、正反转和电流闭环控制。
全部试验结果表明,基于DSP的电动车多轮驱电机协调控制可在牵引驱动的同时实现转向协调,采用成熟的电流闭环控制技术,以软件代替机械差速器的功能,可供多轮驱电动汽车的研究参考。
关键词:电动汽车;多轮驱;DSP;电流闭环控制
Abstract
Three basic functions of the ground running vehicles are bearing, steering and traction. At present, the trend of the pure electric automobiles is the multiwheel drive. This kind of system contains two driven motors at least. By coordinating control of the motors, the bidirectional traction of the electric vehicles can be realized, and coordinating control for the steering could become possible at the same time. Therefore, the related theory and experiment about coordinating control technology of the multiwheel drive has been researched in this paper.
At first, the working principle and characteristic for the permanent magnet brushless dc motor have been analyzed. According to the technique of traditional automobile, the control functions and realization methods of wheel-driven electric vehicle are researched systematically. The conceptual model of the electric tricycle composed of artificial steering wheel and two driven wheels is presented, and the system control strategy based on independent dual motor driven and flexible current instructions assignment has been proposed. The current adjustment handle instructions and current assignment instructions are received in this system, and coordinating control for torque is realized by assignment and closed-loop control for current of the dual motors. Furthermore, steering coordinating control can be realized, while traction of the electric automobiles can be completed.
Secondly, for the control need of the electric tricycle mentioned above, the hardware driven circuit of magnet brushless dc motor has been designed on the basis of comparing for power driven circuit structure, control means, mehod of current and rotor’s position signal detection of motor. And the hardware test and research platform of the dual-motor coordinating control system taking TMS320F2812 as the main controller has been builded up. The entire demand of software control system has been analyzed and input modules, output modules and control modules of system have been programmed. The software design of the dual-motor coordinating control system has been accomplished at last.
Finally, system software and hardware joint debug has been completed on the experimental study platform. Speed detection subsystem has been calibrated by the motor open-loop tests. Current detection subsystem has been calibrated by excitation permanent current imposed separately. And current closed-loop control of motor has been completed. The test results show that the control system can realize starting, speed adjustment, clockwise and anti-clockwise running and current closed-loop control functions of motor.
All the test results show that the coordinating control for multiple driven motors of the electric vehicle based on DSP can realize coordinating control for the steering, while traction of the electric automobiles can be completed. Mature technique of current closed-loop control is adopted, and the function of differential mechanism can be replaced by software module, which gives the reference to the study of multiwheel electric vehicles.
Keywords: Electric Vehicle; Multiwheel Drive; DSP; Current Closed-loop Control;
目 录
第1章 绪 论 1
1.1 课题研究背景及意义 1
1.2 多轮驱协调控制的现状 1
1.3 论文完成的主要工作 3
第2章 电动车控制技术研究 4
2.1 无刷直流电动机分析 4
2.1.1 工作原理 4
2.1.2 数学模型 6
2.1.3 建模仿真 8
2.2 电动车控制功能及实现 11
2.3 电动三轮车概念模型及策略 14
2.3.1 电动三轮车概念模型 14
2.3.2 双电机协调控制策略 15
2.4 研究技术路线 17
2.5 本章小结 17
第3章 电气控制系统硬件设计 18
3.1 电气控制系统方案研究 18
3.1.1 功率桥电路与控制 18
3.1.2 电机电流检测方案 21
3.1.3 转子位置信号检测 21
3.2 控制调节系统研究 22
3.2.1 控制调节系统需求 22
3.2.2 硬件解决方案 22
3.3 电气控制系统的实现 23
3.3.1 电流控制输入电路 23
3.3.2 PWM信号隔离电路 24
3.3.3 电机功率驱动电路 24
3.3.4 转子位置检测电路 28
3.3.5 电机电流检测电路 28
3.4 控制系统可靠性设计 30
3.4.1 电源去耦 30
3.4.2 信号隔离 31
3.4.3 布线线宽 31
3.5 本章小结 32
第4章 控制系统应用软件设计 33
4.1 软件总体分析 33
4.2 输入模块软件设计 34
4.2.1 控制信号输入 34
4.2.2 转子位置检测 38
4.2.3 电机转速测量 38
4.2.4 电压电流采集 41
4.3 输出模块软件设计 42
4.4 控制模块软件设计 45
4.5 本章小结 47
第5章 系统调试与试验结果分析 48
5.1 试验研究平台介绍 48
5.2 电机开环调试 49
5.2.1 转速标定 49
5.2.2 转速/电流特性 50
5.3 电流检测系统标定 51
5.4 电流闭环系统调试 52
结 论 55
致 谢 56
参考文献 57
参考文献
[1] 孙志红等.坦克电传动系统的发展和展望.四川兵工学报,2005,第1期:12-14
[2] 吕勤等.基于工控机+DSP的移动机器人控制系统设计.电气传动自动化,2009,第31卷第1期:43-46
[3] 徐宗祥.我国电力机车的发展回顾.中国铁路,2001,第2期:12-14
[4] 陈清泉.电动汽车及混合动力汽车的发展现状.陈清泉院士论文选集—现代电动车、电机驱动及电力电子技术.北京:机械工业出版社,2005:43-64
[5] 陈清泉.电动汽车的现状及发展趋势.陈清泉院士论文选集—现代电动车、电机驱动及电力电子技术.北京:机械工业出版社,2005:6-13
[6] S. Gair. Motor Drives and Propulsion Systems for EVs, 1998, The Institution of Electrical Engineers
[7] 陈清泉等.21世纪的绿色交通工具—电动车.北京:清华大学出版社,2000
[8] 李兴虎.电动汽车概论.北京:北京理工大学出版社,2005
[9] 陈清泉等.现代电动汽车技术.北京:北京理工大学出版社,2002
[10] 宁国宝.电动车轮边驱动系统的发展.新能源汽车,2006.11,2-6
[11] 王玲珑等.轮毂式电动汽车驱动系统的研究与开发.汽车电器,2007,第3期,7-10
[12] Ju-Sang Lee,Young-Jac Ryoo,Young-Cheol Lim. A Neural network model of electric differential system for electric vehicle,26th Annual Confernece of the IEEE,2000,1:83-87
[13] 郭建龙等.电动车用多电机独立轮式驱动的协调运行分析.微特电机,2007,第1期
[14] Peng Xu. A Novel Fore Axle Whole-turning Driving and Control System for Direct-Wheel-Driven Electric Vehicle,Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China September 2008:705-709
[15] Guilin Tao. A Novel Driving and Control System for Direct-Wheel- Driven Electric Vehicle, IEEE TRANSACTIONS ON MAGNETICS, VOL.41, NO.1, JANUARY 2005