[外文翻译]电力系统动态模拟中可控负载的设计.rar

RAR格式版权申诉手机打开展开

[外文翻译]电力系统动态模拟中可控负载的设计,/design of controllable load for power system dynamic simulation内容包含中文翻译和英文原文,内容完善,建议下载阅览。①中文页数 10中文字数 4391②英文页数 9英文字数 2666③ 摘要 在电力系统运行中,维...
编号:36-34764大小:329.00K
分类: 论文>外文翻译

该文档为压缩文件,包含的文件列表如下:

内容介绍

原文档由会员 郑军 发布

[外文翻译]电力系统动态模拟中可控负载的设计/Design of Controllable Load for Power System Dynamic Simulation
内容包含中文翻译和英文原文,内容完善,建议下载阅览。

①中文页数 10

中文字数 4391

②英文页数 9

英文字数 2666

③ 摘要
在电力系统运行中,维护潮流解是很重要的。在最近的管制环境中,因为不同的电力交易和以利益为基础的业务计划,不确定性已经在电力系统中成为了比较普遍的现象。因此,在当前和未来的电力行业,可能会有比在过去更多的无法解决的情况。本文提出了一种方法,以确定适当的无功功率赔偿来恢复在无法解决的严重意外中的潮流解。为了分析潮流解,我们提出了一个用来确定支流参数的连续潮流工具。在可解的情况下,注入无功功率的适当的地点由灵敏度分析而决定,这种灵敏度分析以结点上正常载体的独立参数比较所得的由连续潮流工具建造的V曲线为基础。那个灵敏性资料的效力,由比较无功补偿在每个位置的数额来验证。在一个案例研究中,提出的这种算法是适用于韩国电力公社(电力)系统的。

In power system operation, maintaining power flow solvability is important. In the recent deregulated environment, uncertainty has become more prevalent in power systems because of diverse power transactions and benefit-based operational schemes. Thus, in the present and future power industry, there may be more unsolvable cases than there were in the past integrated power industry. This paper presents a methodology to determine the adequate reactive power compensation for restoring power flow solvability in the unsolvable severe contingencies. To analyze power flow solvability, a continuation power flow tool parameterizing branch parameters of contingencies is applied. In solvable cases, the adequate locations of the additional reactive power injection are determined by sensitivity analysis based on the normal vector at the nose point of the independent parameter vs. V curves, constructed by the continuation power flow tool. The effectiveness of the sensitivity information is verified by comparing the amount of reactive power compensation at each location. In a case study, the proposed algorithm is applied to the Korea Electric Power Corporation (KEPCO) Systems.

④关键字 可控/controllable load

⑤参考文献
[1] IEEE/PES Power System Stability Subcommittee, "Voltage stability assessment, procedures and guides", IEEE Report Final Draft, 2000.
[2] T. Van Cutsem, "A method to compute reactive power margins with respect to voltage collapse", IEEE Trans. Power Systems, vol. 6, no. 1,pp. 145-156, Feb. 1991.
[3] A study no the assessment of the dynamic performance of Korea Electric Power System and its enhancement, final report, Korea Power Exchange, Seoul, Korea, Nov. 2002.
[4] B. Lee, H. Song, S. Kim, S.-H. Kwon, G. Jang and V. Ajjarapu, "A study on determination of interface flow limits in the KEPCO system using the modified continuation power flow(MCPF)", IEEE Trans. Power Systems,vol. 17, no. 3, pp. 557-564, Aug. 2002.
[5] A.J. Flueck, J.R. Dondeti, "A new continuation power flow tool for investigating the nonlinear effects of transmission branch parameter variations", IEEE Trans. PWRS, vol. 15, no. 1, pp. 223-227, Feb. 2000.
[6] V. Ajjarapu, C. Christy, "The continuation power flow: a tool for steady state voltage stability analysis", IEEE Trans. PWRS, vol. 7, no. 1, pp.416-423, Feb. 1992.
[7] I. Dobson, "Observations on the Geometry of Saddle Node Bifurcation and Voltage Collapse in Electrical Power Systems", IEEE Trans. Circuit and Systems, vol. 39, no. 3, pp. 240-243, March 1992.
[8] B. Lee and V.Ajjarapu, "Invariant subspace parametric sensitivity(ISPS) of structure preserving power system models", IEEE Trans. PWRS, vol. 11, no. 2, pp. 845-850, May 1996.
[9] Jooho Lee, Hwachang Song, Byungjun Lee, "A study on the corrective control to restore power flow solvability in severe contingencies by using branch parameter continuation power flow", 2003 Power engineering Spring Conference, pp.30-34.