[外文翻译]利用一般的运动学模式对五轴机床的结构进行分析.rar

RAR格式版权申诉手机打开展开

[外文翻译]利用一般的运动学模式对五轴机床的结构进行分析,/con.guration analysis of .ve-axis machine tools using a generic kinematic model内包含中文翻译和英文原文,内容完善,建议下载阅览。①中文页数15中文字数8952②英文页数16英文字数5...
编号:36-34866大小:573.60K
分类: 论文>外文翻译

该文档为压缩文件,包含的文件列表如下:

内容介绍

原文档由会员 郑军 发布

[外文翻译]利用一般的运动学模式对五轴机床的结构进行分析/Con.guration analysis of .ve-axis machine tools using a generic kinematic model
内包含中文翻译和英文原文,内容完善,建议下载阅览。

①中文页数15

中文字数8952

②英文页数16

英文字数5777

③ 摘要
五轴机床的设计常用于许多种类的运动学配置和结构中。先不管将要分析的这种类型,为了确定实现切削刀具相对工件的的具体位置和方向所必须的平移和旋转合成运动,一种机床的运动学模型将得到阐述。在本次研究中,一种通用和统一的模型作为可变选择的特殊的仅运用于单独机器配置的解决方案将得到阐述。这种通用的模型可用于检验两旋转连接件在三种主要的五轴机床运动链中的可行性:旋转轴,旋转工作台以及混合类型。一种完整的平移合成运动数字测量已经提出用于估计五轴机床的运动性能。相对应的运动分析已经证实了利用交叉旋转轴和在设置中最小化典型的切削刀具和工件旋转臂长度共同的工业实践的普及的机械设计的效益。

Five-axis machine tools are designed in a large variety of kinematic con.gurations and structures. Regardless of the type of the intended analysis, a kinematic model of the machine tool has to be developed in order to determine the translational and rotational joint movements required to achieve a speci.ed position and orientation of the cutting tool relative to the workpiece. A
generic and uni.ed model is developed in this study as a viable alternative to the particular solutions that are only applicable to individual machine con.gurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of .ve-axis machine tools: the spindle rotating, rotary table, and hybrid type. A numerical measure of total translational joint movement is proposed to evaluate the kinematic performance of a .ve-axis machine tool. The corresponding kinematic analyses have con.rmed the advantages of the popular machine design that employs intersecting rotational axes and the common industrial practice during setup that minimizes the characteristic rotating arm length of the cutting tool and/or workpiece.


④关键字 五轴机/Five-axis machin

⑤参考文献
[1] M. Tsutsumi, A. Saito, Identi.cation and compensation of systematic deviations particular to 5-axis machining centers, International Journal of Machine Tools and Manufacture 43 (8) (2003) 771–780.
[2] K.J. Campshure, Mapping your way to .ve-axis machining, Modern Machine Shop 70 (6) (1997) 98–108.
[3] P. Zelinski, Four types of .ve-axis machining centers, Modern Machine Shop 71 (10) (1999) 94–103.
[4] J. Denavit, R.S. Hartenberg, A kinematic notation for lowerpair mechanisms based on matrices, ASME Journal of Applied Mechanics 22 (2) (1955) 215–221.
[5] R.P. Paul, Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge, MA, 1981.
[6] D.N. Reshetov, V.T. Portman, Accuracy of Machine Tools,ASME Press, New York, 1988.
[7] S.H. Suh, J.J. Lee, Five-axis part machining with three-axis CNC machine and indexing table, ASME Journal of Manufacturing Science and Engineering 120 (1998) 120–128.
[8] E. Bohez, S.S. Makhanov, K. Sonthipermpoon, Adaptive nonlinear tool path optimization for .ve-axis machining, International Journal of Production Research 38 (17) (2000) 4329–4343.