2010年高考数学试题分类汇编——函数.doc
约35页DOC格式手机打开展开
2010年高考数学试题分类汇编——函数,共35页(2010上海文数)22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。若实数、、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)对任意两个不相等的正数、,证明:比接近;(3)已知函数的定义域.任取,等于和中接近0的那个...
内容介绍
此文档由会员 草根奋斗者 发布
2010年高考数学试题分类汇编——函数 共35页
(2010上海文数)22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
解析:(1) x(2,2);(2) 对任意两个不相等的正数a、b,有,,因为,所以,即a2bab2比a3b3接近;(3) ,kZ,f(x)是偶函数,f(x)是周期函数,最小正周期T,函数f(x)的最小值为0,函数f(x)在区间单调递增,在区间单调递减,kZ.
(2010湖南文数)21.(本小题满分13分)
已知函数其中a<0,且a≠-1.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设函数(e是自然数的底数)。是否存在a,使在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由。
(2010浙江理数) (22)(本题满分14分)已知是给定的实常数,设函数,,
是的一个极大值点.
(Ⅰ)求的取值范围;
(Ⅱ)设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由.
解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识。
(Ⅰ)解:f’(x)=ex(x-a)
令
于是,假设
当x1=a 或x2=a时,则x=a不是f(x)的极值点,此时不合题意。
当x1a且x2a时,由于x=a是f(x)的极大值点,故x1即
即
所以b<-a
所以b的取值范围是(-∞,-a)
此时
或
(2)当时,则或
于是
此时
综上所述,存在b满足题意,
当b=-a-3时,
时,
时,
(2010全国卷2理数)(22)(本小题满分12分)
设函数.
(Ⅰ)证明:当时,;
(Ⅱ)设当时,,求a的取值范围.
【命题意图】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力.
【参考答案】
【点评】导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱。作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.
(2010陕西文数)21、(本小题满分14分)
已知函数f(x)=,g(x)=alnx,aR。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对(2)中的(a),证明:当a(0,+)时, (a)1.
解 (1)f’(x)=,g’(x)=(x>0),
由已知得 =alnx,
=, 解德a=,x=e2,
两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)= ,
切线的方程为y-e=(x- e2).
(2)由条件知
(2010上海文数)22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
解析:(1) x(2,2);(2) 对任意两个不相等的正数a、b,有,,因为,所以,即a2bab2比a3b3接近;(3) ,kZ,f(x)是偶函数,f(x)是周期函数,最小正周期T,函数f(x)的最小值为0,函数f(x)在区间单调递增,在区间单调递减,kZ.
(2010湖南文数)21.(本小题满分13分)
已知函数其中a<0,且a≠-1.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设函数(e是自然数的底数)。是否存在a,使在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由。
(2010浙江理数) (22)(本题满分14分)已知是给定的实常数,设函数,,
是的一个极大值点.
(Ⅰ)求的取值范围;
(Ⅱ)设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由.
解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识。
(Ⅰ)解:f’(x)=ex(x-a)
令
于是,假设
当x1=a 或x2=a时,则x=a不是f(x)的极值点,此时不合题意。
当x1a且x2a时,由于x=a是f(x)的极大值点,故x1即
即
所以b<-a
所以b的取值范围是(-∞,-a)
此时
或
(2)当时,则或
于是
此时
综上所述,存在b满足题意,
当b=-a-3时,
时,
时,
(2010全国卷2理数)(22)(本小题满分12分)
设函数.
(Ⅰ)证明:当时,;
(Ⅱ)设当时,,求a的取值范围.
【命题意图】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力.
【参考答案】
【点评】导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱。作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.
(2010陕西文数)21、(本小题满分14分)
已知函数f(x)=,g(x)=alnx,aR。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对(2)中的(a),证明:当a(0,+)时, (a)1.
解 (1)f’(x)=,g’(x)=(x>0),
由已知得 =alnx,
=, 解德a=,x=e2,
两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)= ,
切线的方程为y-e=(x- e2).
(2)由条件知