buck电路的pid控制.doc
约47页DOC格式手机打开展开
buck电路的pid控制,buck电路的pid控制1.88万字我自己原创的毕业论文,仅在本站独家提交,大家放心使用摘要dc-dc变换器是将固定的直流电压转变成可变的直流电压,也称为直流斩波。buck电路具有自身易驱动,电压、电流容量大,开关应力小,短路保护功能,不存在浪涌电流问题等优点。因而在电力电子领域中被广泛应用。而在工程实际中,应用最广泛...
内容介绍
此文档由会员 淘宝大梦 发布
Buck电路的PID控制
1.88万字
我自己原创的毕业论文,仅在本站独家提交,大家放心使用
摘要 DC-DC变换器是将固定的直流电压转变成可变的直流电压,也称为直流斩波。Buck电路具有自身易驱动,电压、电流容量大,开关应力小,短路保护功能,不存在浪涌电流问题等优点。因而在电力电子领域中被广泛应用。而在工程实际中,应用最广泛的调节器控制规律便是比例、积分、微分控制,即PID控制。
本文着重阐述的是基于PID控制规律的Buck电路的调控过程。当然仅用单一的PID控制对Buck电路进行调控,是远远不够的,传统的PID控制器是基于线性调控的,不能满足对非线性状态和非最小相位的调控。因此需要在传统PID控制器的基础上进一步改进调控方式。而本文着重介绍了几种调控方法,将这几种方法互补结合,来对Buck电路进行控制,并研究其效果。并针对Buck电路,通过进行PID调控,使得系统在给定误差范围内能够稳定输出。首先建立出基于状态空间平均建模法的Buck电路的模型,同时研究了其他几种建模方式。对其进行基于PID各种整定方式的研究,在此基础上,通过数字仿真来验证其性能,对比几种调控方式下系统的各项性能。最后通过实物制作与检测来得到基于PID调控下的稳定的Buck电路。
关键词:Buck电路 PID调控 DC-DC变换器
The PID control of Buck circuit
Abstract The DC - DC converter is a converter that can turn a fixed DC voltage into a variable DC voltage, which is also known as the DC chopper. Buck circuit has many advantages such as its easy to driving, large voltage capacity and large current capacity, small switch stress , short circuit protection function, no surge current problems, etc. And therefore now the DC-DC converter is widely used in the field of power electronics. In the engineering practice, the most widely used regulator control law is proportional, integral and differential control, which we call the PID control law.
This paper focuses on the Buck circuit based on the PID control law for the regulation process. There is no doubt that adjusting and controlling the Buck circuit only with a single PID control is far away from enough, the reason for it is that the traditional PID controller is only based on the linear control, it can't meet for the nonlinear state and non minimum phase control. Therefore we need to improve the way to regulate on the basis of traditional PID controller. Several control methods are introduced in this paper. By combining several methods, we control the Buck circuit and then research for its effect on each method. And we aim at the Buck circuit by means of the PID control, ensure that the system can finally maintain a stable output within a given error. First of all, in this article, the model of Buck circuit based on the state space averaging method is established, by the way several other modeling methods have also been studied, and then the types on the basis of various PID adjusting method are researched. On this basis, there is a need to verify its performance through the digital simulation. The various performance of the system under different control methods are compared. Finally the stable Buck circuit based on the PID control is obtained by physical making and testing.
Key words Buck circuit the PID control DC-DC converter
目 录
第一章 绪论 1
1.1 课题背景及意义 1
1.2斩波变换器的发展概况 2
1.3 各种控制方法的发展概况 2
1.3.1 PID控制规律 2
1.3.2 滑模变结构控制 5
1.3.3 无源性控制 6
1.3.4 模糊控制 6
第二章 Buck电路的建模 7
2.1 Buck电路的模型及工作原理 7
2.2斩波电路的控制方法 8
2.3 建模方法 10
第三章PID控制规律 15
3.1 PID控制器的基本原理 15
3.2模糊自整定PID控制 17
3.3遗传算法整定PID控制 21
3.4继电反馈自整定PID控制 21
第四章 基于普通PID控制规律的Buck电路的控制 24
4.1 开环Buck电路 24
4.2 PI控制方法的设计 27
4.3 PID控制方法的设计 29
第五章 实物验证 32
5.1主要元器件 32
5.2 实物制作 35
5.3 测试结果 37
第六章 结论与展望 39
结论 39
展望 40
致谢 41
参考文献 42
1.88万字
我自己原创的毕业论文,仅在本站独家提交,大家放心使用
摘要 DC-DC变换器是将固定的直流电压转变成可变的直流电压,也称为直流斩波。Buck电路具有自身易驱动,电压、电流容量大,开关应力小,短路保护功能,不存在浪涌电流问题等优点。因而在电力电子领域中被广泛应用。而在工程实际中,应用最广泛的调节器控制规律便是比例、积分、微分控制,即PID控制。
本文着重阐述的是基于PID控制规律的Buck电路的调控过程。当然仅用单一的PID控制对Buck电路进行调控,是远远不够的,传统的PID控制器是基于线性调控的,不能满足对非线性状态和非最小相位的调控。因此需要在传统PID控制器的基础上进一步改进调控方式。而本文着重介绍了几种调控方法,将这几种方法互补结合,来对Buck电路进行控制,并研究其效果。并针对Buck电路,通过进行PID调控,使得系统在给定误差范围内能够稳定输出。首先建立出基于状态空间平均建模法的Buck电路的模型,同时研究了其他几种建模方式。对其进行基于PID各种整定方式的研究,在此基础上,通过数字仿真来验证其性能,对比几种调控方式下系统的各项性能。最后通过实物制作与检测来得到基于PID调控下的稳定的Buck电路。
关键词:Buck电路 PID调控 DC-DC变换器
The PID control of Buck circuit
Abstract The DC - DC converter is a converter that can turn a fixed DC voltage into a variable DC voltage, which is also known as the DC chopper. Buck circuit has many advantages such as its easy to driving, large voltage capacity and large current capacity, small switch stress , short circuit protection function, no surge current problems, etc. And therefore now the DC-DC converter is widely used in the field of power electronics. In the engineering practice, the most widely used regulator control law is proportional, integral and differential control, which we call the PID control law.
This paper focuses on the Buck circuit based on the PID control law for the regulation process. There is no doubt that adjusting and controlling the Buck circuit only with a single PID control is far away from enough, the reason for it is that the traditional PID controller is only based on the linear control, it can't meet for the nonlinear state and non minimum phase control. Therefore we need to improve the way to regulate on the basis of traditional PID controller. Several control methods are introduced in this paper. By combining several methods, we control the Buck circuit and then research for its effect on each method. And we aim at the Buck circuit by means of the PID control, ensure that the system can finally maintain a stable output within a given error. First of all, in this article, the model of Buck circuit based on the state space averaging method is established, by the way several other modeling methods have also been studied, and then the types on the basis of various PID adjusting method are researched. On this basis, there is a need to verify its performance through the digital simulation. The various performance of the system under different control methods are compared. Finally the stable Buck circuit based on the PID control is obtained by physical making and testing.
Key words Buck circuit the PID control DC-DC converter
目 录
第一章 绪论 1
1.1 课题背景及意义 1
1.2斩波变换器的发展概况 2
1.3 各种控制方法的发展概况 2
1.3.1 PID控制规律 2
1.3.2 滑模变结构控制 5
1.3.3 无源性控制 6
1.3.4 模糊控制 6
第二章 Buck电路的建模 7
2.1 Buck电路的模型及工作原理 7
2.2斩波电路的控制方法 8
2.3 建模方法 10
第三章PID控制规律 15
3.1 PID控制器的基本原理 15
3.2模糊自整定PID控制 17
3.3遗传算法整定PID控制 21
3.4继电反馈自整定PID控制 21
第四章 基于普通PID控制规律的Buck电路的控制 24
4.1 开环Buck电路 24
4.2 PI控制方法的设计 27
4.3 PID控制方法的设计 29
第五章 实物验证 32
5.1主要元器件 32
5.2 实物制作 35
5.3 测试结果 37
第六章 结论与展望 39
结论 39
展望 40
致谢 41
参考文献 42