基于近红外光谱的发酵过程ph值软测量技术研究.doc
约42页DOC格式手机打开展开
基于近红外光谱的发酵过程ph值软测量技术研究,基于近红外光谱的发酵过程ph值软测量技术研究1.89万字我自己原创的毕业论文,仅在本站独家提交,大家放心使用摘要固态发酵是一个多相多变量、强耦合的非线性系统。在固态发酵生产过程中,一些关键参数如ph值,只能通过离线检测来获得,往往造成信息滞后,这严重制约了固态发酵系统控制性能的提高。近红外光谱分析技术具有快速、无损、准...
内容介绍
此文档由会员 曹操55 发布
基于近红外光谱的发酵过程pH值软测量技术研究
1.89万字
我自己原创的毕业论文,仅在本站独家提交,大家放心使用
摘要 固态发酵是一个多相多变量、强耦合的非线性系统。在固态发酵生产过程中,一些关键参数如pH值,只能通过离线检测来获得,往往造成信息滞后,这严重制约了固态发酵系统控制性能的提高。近红外光谱分析技术具有快速、无损、准确,多组分同时检测等优点,将其与软测量方结合是解决上述问题的有效途径之一。
本文首先介绍了近红外光谱技术的特点和应用,及其研究现状和发展前景,并以小麦秸秆蛋白发酵过程为主要研究对象,对获取的固态发酵物样本的原始近红外光谱,采用离散小波变换结合主成分分析对其进行滤噪和特征提取;然后利用提取的特征变量建立基于支持向量回归的参数模型进行回归预测,并采用网格搜索算法对模型进行参数寻优。本实验的数据处理工作是在Matlab平台下完成,140个样本分成训练集105个和测试集35个,利用K-CV进行交叉检验,SVR为ε-SVR类型,核函数选取RBF。研究结果表明,利用近红外光谱技术结合支持向量回归来进行固态发酵的pH值软测量是可行的,并且具有较理想的结果。
关键词:固态发酵,近红外光谱技术,支持向量回归,网格搜索
Research on Soft-sensing Technique of pH Value of Fermentation Processes Based on Near-infrared Spectroscopy
Abstract Solid-state fermentation is a multi-phase and multi-variable nonlinear system with high coupling. During the production process of solid-state fermentation, some key variables like pH value can only be obtained through off-line testing, resulting in information lag, this has seriously hampered the control performance of solid-state fermentation system from being improved. Near Infrared Spectroscopy has the advantages of celerity, accuracy, non-destruction, multi-component detection, etc. Therefore, to combine the near-infrared spectroscopy with the soft sensor is one of the effective ways that can solve the problem mentioned above.
Firstly, the structure, present situation of near-infrared spectroscopy and its application prospect are introduced, and wheat straw feed protein fermentation process has been selected as the main research object, the raw spectra of all fermented samples obtained were denoised by use of the discrete wavelet transform (DWT), and the feature vectors were extracted by use of principal component analysis (PCA) from the spectral data preprocessed. Then, the parametric model was developed by use of Support Vector Regression(SVR),and using Grid search algorithm for model parameter optimization. The experimental data processing is completed in Matlab, 140 samples are divided into training set of 105 and test set of 35, using K-CV, ε-SVR type and RBF kernel function. The overall results sufficiently demonstrate that near-infrared spectroscopy technology coupled with that SVR could be successfully used in soft-sensing of pH value during solid-state fermentation, and have an ideal result.
Key words:Solid-state fermentation,Near-infrared spectroscopy technology,Support Vector Regression,Grid search
目 录
第一章 绪论 1
1.1 研究背景与意义 1
1.2 近红外光谱技术的发展和应用 2
1.2.1 近红外光谱概述 2
1.2.2 近红外光谱技术的发展与应用 2
1.2.3 近红外光谱在发酵领域中的应用 3
1.3 支持向量机 4
1.3.1 支持向量机概述 4
1.3.2 支持向量机基本思想 5
1.3.3 核函数 6
1.4 本文研究主要内容 7
1.5 本章小结 7
第二章 固态发酵试验与数据采集及预处理 9
2.1 试验材料与方法 9
2.1.1 试验主要设备 9
2.1.2 样本制备 9
2.1.3 pH值测定 10
2.2 光谱信息的采集 11
2.3 光谱预处理 12
2.3.1 平滑处理 12
2.3.2 基线校正 13
2.3.3 归一化处理 16
2.4 本章小结 16
第三章 基于SVR的近红外光谱的pH值软测量方法研究 17
3.1 小波变换 17
3.1.1 小波变换的基本理论 17
3.1.2 离散小波变换 17
3.1.3 离散小波去噪 19
3.2 主成分分析 21
3.3 支持向量回归 23
3.3.1 支持向量回归理论 23
3.3.2 支持向量回归实验 24
3.3.3 性能评价 26
3.4 参数优化 26
3.4.1 参数简介 26
3.4.2 网格法寻优 27
3.5 本章小结 29
结 论 31
致 谢 32
参考文献: 33
附录 37
1.89万字
我自己原创的毕业论文,仅在本站独家提交,大家放心使用
摘要 固态发酵是一个多相多变量、强耦合的非线性系统。在固态发酵生产过程中,一些关键参数如pH值,只能通过离线检测来获得,往往造成信息滞后,这严重制约了固态发酵系统控制性能的提高。近红外光谱分析技术具有快速、无损、准确,多组分同时检测等优点,将其与软测量方结合是解决上述问题的有效途径之一。
本文首先介绍了近红外光谱技术的特点和应用,及其研究现状和发展前景,并以小麦秸秆蛋白发酵过程为主要研究对象,对获取的固态发酵物样本的原始近红外光谱,采用离散小波变换结合主成分分析对其进行滤噪和特征提取;然后利用提取的特征变量建立基于支持向量回归的参数模型进行回归预测,并采用网格搜索算法对模型进行参数寻优。本实验的数据处理工作是在Matlab平台下完成,140个样本分成训练集105个和测试集35个,利用K-CV进行交叉检验,SVR为ε-SVR类型,核函数选取RBF。研究结果表明,利用近红外光谱技术结合支持向量回归来进行固态发酵的pH值软测量是可行的,并且具有较理想的结果。
关键词:固态发酵,近红外光谱技术,支持向量回归,网格搜索
Research on Soft-sensing Technique of pH Value of Fermentation Processes Based on Near-infrared Spectroscopy
Abstract Solid-state fermentation is a multi-phase and multi-variable nonlinear system with high coupling. During the production process of solid-state fermentation, some key variables like pH value can only be obtained through off-line testing, resulting in information lag, this has seriously hampered the control performance of solid-state fermentation system from being improved. Near Infrared Spectroscopy has the advantages of celerity, accuracy, non-destruction, multi-component detection, etc. Therefore, to combine the near-infrared spectroscopy with the soft sensor is one of the effective ways that can solve the problem mentioned above.
Firstly, the structure, present situation of near-infrared spectroscopy and its application prospect are introduced, and wheat straw feed protein fermentation process has been selected as the main research object, the raw spectra of all fermented samples obtained were denoised by use of the discrete wavelet transform (DWT), and the feature vectors were extracted by use of principal component analysis (PCA) from the spectral data preprocessed. Then, the parametric model was developed by use of Support Vector Regression(SVR),and using Grid search algorithm for model parameter optimization. The experimental data processing is completed in Matlab, 140 samples are divided into training set of 105 and test set of 35, using K-CV, ε-SVR type and RBF kernel function. The overall results sufficiently demonstrate that near-infrared spectroscopy technology coupled with that SVR could be successfully used in soft-sensing of pH value during solid-state fermentation, and have an ideal result.
Key words:Solid-state fermentation,Near-infrared spectroscopy technology,Support Vector Regression,Grid search
目 录
第一章 绪论 1
1.1 研究背景与意义 1
1.2 近红外光谱技术的发展和应用 2
1.2.1 近红外光谱概述 2
1.2.2 近红外光谱技术的发展与应用 2
1.2.3 近红外光谱在发酵领域中的应用 3
1.3 支持向量机 4
1.3.1 支持向量机概述 4
1.3.2 支持向量机基本思想 5
1.3.3 核函数 6
1.4 本文研究主要内容 7
1.5 本章小结 7
第二章 固态发酵试验与数据采集及预处理 9
2.1 试验材料与方法 9
2.1.1 试验主要设备 9
2.1.2 样本制备 9
2.1.3 pH值测定 10
2.2 光谱信息的采集 11
2.3 光谱预处理 12
2.3.1 平滑处理 12
2.3.2 基线校正 13
2.3.3 归一化处理 16
2.4 本章小结 16
第三章 基于SVR的近红外光谱的pH值软测量方法研究 17
3.1 小波变换 17
3.1.1 小波变换的基本理论 17
3.1.2 离散小波变换 17
3.1.3 离散小波去噪 19
3.2 主成分分析 21
3.3 支持向量回归 23
3.3.1 支持向量回归理论 23
3.3.2 支持向量回归实验 24
3.3.3 性能评价 26
3.4 参数优化 26
3.4.1 参数简介 26
3.4.2 网格法寻优 27
3.5 本章小结 29
结 论 31
致 谢 32
参考文献: 33
附录 37