基于物联网的城市停车诱导系统的研究.doc
约43页DOC格式手机打开展开
基于物联网的城市停车诱导系统的研究,2.2万字自己原创的毕业设计,今年最新的,仅在本站独家提交,大家放心使用摘要 目前城市交通中的“停车难”问题日益成为影响我国大中城市经济发展的难题,虽然最近各地修建了不少新的停车场,但是由于停车诱导信息的不完善,人们仍然需要花费大量时间寻找合适的停车位,既增加了道路交通拥堵,又浪费大量...
内容介绍
此文档由会员 jiji888 发布
基于物联网的城市停车诱导系统的研究
2.2万字
自己原创的毕业设计,今年最新的,仅在本站独家提交,大家放心使用
摘要 目前城市交通中的“停车难”问题日益成为影响我国大中城市经济发展的难题,虽然最近各地修建了不少新的停车场,但是由于停车诱导信息的不完善,人们仍然需要花费大量时间寻找合适的停车位,既增加了道路交通拥堵,又浪费大量的宝贵时间。经过对现有泊车诱导系统以及城市停车管理现实情况的分析发现,停车场内部泊位诱导主要存在以下问题:一是如何确保诱导信息的实时性和准确性,二是如何确保停车者对诱导信息的满意度。针对这些问题,本文将物联网思想应用到大城市的停车诱导系统中,建立实时、准确的泊车诱导信息体系,实现城市内部停车场的停车位信息的网络互联,提供准确实时的信息,方便停车者停车。
本文首先针对我国停车泊位诱导系统方面存在的问题及不足,分析国内外物联网和停车诱导系统方面的发展现状,并对物联网在停车诱导方面的应用情况进行论述,在此基础上提出了基于物联网的泊位诱导系统,明确了论文的研究目的和意义,拟定论文的研究思路和总体框架。文中同时还讨论和分析了基于物联网技术的停车诱导系统的总体要求、设计原则、功能需求等应用需求,并描述了各功能模块的架构和实现流程。本文重点分析并提出了在物联网环境下的最优车位选择算法,论述了算法的基本原理和改进,使客户停车更加方便快捷。
本文成功的将蚁群算法引入到了最优停车位的模型中来,以此来解决车位预定中的最优车位选择问题,并且根据现实中的驾驶员停车特点,对蚁群算法进行了部分改进, 使其更加符合物联网环境下的最优车位选择问题。用户可以准确快速的寻找自己合适的停车车位,节省了时间并且有利于缓解在停车高峰期的堵车问题。
关键词:
物联网 泊位诱导 蚁群算法 泊位选择
Key technology research things on the parking
guidance system
Abstract Currently urban transport in the "parking difficult" issues affecting our cities are increasingly becoming the economic development problems, although recently a lot of new construction around the parking lot, but because of imperfect information, parking guidance, people still need to spend a lot of time looking for suitable parking spaces, not only increasing the road traffic congestion, but also waste a lot of valuable time.After analysis of the existing parking guidance systems and parking management urban realities found inside parking spaces induced following major issues: First, how to ensure the timeliness and accuracy of the guidance information, the second is how to ensure that those on the parking guidance information satisfaction. To solve these problems, we thought things would apply to metropolitan parking guidance system, create real-time, accurate parking guidance information system, to achieve network interconnection inner city parking parking information, providing accurate real-time information to facilitate parkers parking.
Firstly, for the problems and shortcomings of parking spaces induction systems, analyzing the current development of domestic and foreign things and parking guidance systems, and parking guidance and networking in terms of the application are discussed, on this basis, based on the proposed things berth induction system, a clear purpose and significance of research papers, research ideas and develop the overall framework of the paper. The paper also discusses and analyzes the application of networking technology needs of the general requirements of parking guidance systems, design principles, based on functional requirements, etc., and describes the structure of the functional modules and the implementation process. This article focuses on the analysis and proposed parking spaces in optimal networking environment selection algorithm, discusses the basic principle of the algorithm and implementation of process improvement, enabling customers faster and more convenient parking.
The success of the ant colony algorithm is introduced in this article to model the optimal parking spaces in the past, in order to solve the optimal parking spaces predetermined selection problem, and depending on the characteristics of the reality of the driver to stop, to improve the ant colony algorithm part to make it more in line with the best parking IOT environment choice. Users can quickly and accurately find their suitable parking spaces, saving time and help alleviate the problem of traffic jams in the parking peak.
Key words:
Internet of Things Berth Guidance Ant Colony Algorithm Berth Selection
目录
第一章 绪论 1
1.1 研究背景 1
1.2 物联网发展现状 2
1.2.1 国外物联网发展状况 2
1.2.2 国内物联网发展状况 3
1.3 停车泊位诱导系统发展现状 4
1.3.1国外城市停车诱导系统发展现状 4
1.3.2国内城市停车诱导系统发展状况 5
1.4 研究目的及意义 6
第二章 基于物联网技术的停车诱导系统研究 7
2.1 基于物联网技术的城市停车诱导系统模型 7
2.1.1总体要求 7
2.1.2 设计原则 8
2.1.3 功能需求分析 8
2.1.4 系统架构 8
2.1.5 系统功能描述 14
2.2 基于物联网技术的城市停车诱导系统优势 19
2.2.1系统应用价值 19
2.2.2 系统的特点 20
第三章 停车位预定模块的算法 22
3.1最优车位选择算法提出的背景 22
3.2蚁群算法的基本原理 23
3.3 最优停车位模型 26
3.4 物联网环境..
2.2万字
自己原创的毕业设计,今年最新的,仅在本站独家提交,大家放心使用
摘要 目前城市交通中的“停车难”问题日益成为影响我国大中城市经济发展的难题,虽然最近各地修建了不少新的停车场,但是由于停车诱导信息的不完善,人们仍然需要花费大量时间寻找合适的停车位,既增加了道路交通拥堵,又浪费大量的宝贵时间。经过对现有泊车诱导系统以及城市停车管理现实情况的分析发现,停车场内部泊位诱导主要存在以下问题:一是如何确保诱导信息的实时性和准确性,二是如何确保停车者对诱导信息的满意度。针对这些问题,本文将物联网思想应用到大城市的停车诱导系统中,建立实时、准确的泊车诱导信息体系,实现城市内部停车场的停车位信息的网络互联,提供准确实时的信息,方便停车者停车。
本文首先针对我国停车泊位诱导系统方面存在的问题及不足,分析国内外物联网和停车诱导系统方面的发展现状,并对物联网在停车诱导方面的应用情况进行论述,在此基础上提出了基于物联网的泊位诱导系统,明确了论文的研究目的和意义,拟定论文的研究思路和总体框架。文中同时还讨论和分析了基于物联网技术的停车诱导系统的总体要求、设计原则、功能需求等应用需求,并描述了各功能模块的架构和实现流程。本文重点分析并提出了在物联网环境下的最优车位选择算法,论述了算法的基本原理和改进,使客户停车更加方便快捷。
本文成功的将蚁群算法引入到了最优停车位的模型中来,以此来解决车位预定中的最优车位选择问题,并且根据现实中的驾驶员停车特点,对蚁群算法进行了部分改进, 使其更加符合物联网环境下的最优车位选择问题。用户可以准确快速的寻找自己合适的停车车位,节省了时间并且有利于缓解在停车高峰期的堵车问题。
关键词:
物联网 泊位诱导 蚁群算法 泊位选择
Key technology research things on the parking
guidance system
Abstract Currently urban transport in the "parking difficult" issues affecting our cities are increasingly becoming the economic development problems, although recently a lot of new construction around the parking lot, but because of imperfect information, parking guidance, people still need to spend a lot of time looking for suitable parking spaces, not only increasing the road traffic congestion, but also waste a lot of valuable time.After analysis of the existing parking guidance systems and parking management urban realities found inside parking spaces induced following major issues: First, how to ensure the timeliness and accuracy of the guidance information, the second is how to ensure that those on the parking guidance information satisfaction. To solve these problems, we thought things would apply to metropolitan parking guidance system, create real-time, accurate parking guidance information system, to achieve network interconnection inner city parking parking information, providing accurate real-time information to facilitate parkers parking.
Firstly, for the problems and shortcomings of parking spaces induction systems, analyzing the current development of domestic and foreign things and parking guidance systems, and parking guidance and networking in terms of the application are discussed, on this basis, based on the proposed things berth induction system, a clear purpose and significance of research papers, research ideas and develop the overall framework of the paper. The paper also discusses and analyzes the application of networking technology needs of the general requirements of parking guidance systems, design principles, based on functional requirements, etc., and describes the structure of the functional modules and the implementation process. This article focuses on the analysis and proposed parking spaces in optimal networking environment selection algorithm, discusses the basic principle of the algorithm and implementation of process improvement, enabling customers faster and more convenient parking.
The success of the ant colony algorithm is introduced in this article to model the optimal parking spaces in the past, in order to solve the optimal parking spaces predetermined selection problem, and depending on the characteristics of the reality of the driver to stop, to improve the ant colony algorithm part to make it more in line with the best parking IOT environment choice. Users can quickly and accurately find their suitable parking spaces, saving time and help alleviate the problem of traffic jams in the parking peak.
Key words:
Internet of Things Berth Guidance Ant Colony Algorithm Berth Selection
目录
第一章 绪论 1
1.1 研究背景 1
1.2 物联网发展现状 2
1.2.1 国外物联网发展状况 2
1.2.2 国内物联网发展状况 3
1.3 停车泊位诱导系统发展现状 4
1.3.1国外城市停车诱导系统发展现状 4
1.3.2国内城市停车诱导系统发展状况 5
1.4 研究目的及意义 6
第二章 基于物联网技术的停车诱导系统研究 7
2.1 基于物联网技术的城市停车诱导系统模型 7
2.1.1总体要求 7
2.1.2 设计原则 8
2.1.3 功能需求分析 8
2.1.4 系统架构 8
2.1.5 系统功能描述 14
2.2 基于物联网技术的城市停车诱导系统优势 19
2.2.1系统应用价值 19
2.2.2 系统的特点 20
第三章 停车位预定模块的算法 22
3.1最优车位选择算法提出的背景 22
3.2蚁群算法的基本原理 23
3.3 最优停车位模型 26
3.4 物联网环境..