基于小波变换的图像边缘检测算法研究.doc
约42页DOC格式手机打开展开
基于小波变换的图像边缘检测算法研究,19500字 42页 摘 要边缘是图像的最基本特征,图像的大部分信息都存在于图像的边缘中。因此如何获取图像的边缘,成为图像处理与分析技术中的研究热点。到目前为止,已有许多图像边缘检测的算法,但由于边缘检测的复杂性和固有问题,在抗噪和边缘定位上都没有很好的解决。因为图像边缘点和噪声在频...
内容介绍
此文档由会员 山村野夫 发布
基于小波变换的图像边缘检测算法研究
19500字 42页
摘 要
边缘是图像的最基本特征,图像的大部分信息都存在于图像的边缘中。因此如何获取图像的边缘,成为图像处理与分析技术中的研究热点。到目前为止,已有许多图像边缘检测的算法,但由于边缘检测的复杂性和固有问题,在抗噪和边缘定位上都没有很好的解决。因为图像边缘点和噪声在频域内多为高频信号,目前的算法大多不能解决从局部高频信号中区分噪声和边缘的问题,小波变换的“时频”多尺度分析技术,为图像边缘检测提供了新的技术途径。
小波分析是继 Fourier 分析之后的新的时频域分析工具。由于其良好的时频局部化特点和多尺度特性,能有效地检测和分析信号的奇异点,在检测边缘的同时能有效地抑制噪声,成为研究非平稳信号的有力工具,在信息处理领域中倍受重视,在图像处理技术中得到广泛应用。
本文首先介绍了小波变换的发展和应用前景,概述了图像边缘检测技术的研究现状,然后对经典的图像边缘检测算法进行分析,研究各算子的特点,总结出各自的优缺点,由此引出小波变换应用于图像边缘检测中的研究。多尺度边缘表征了图像中不同强度和大小结构的边缘,是图像的重要特征。如果对变换后的整幅图像取同一阈值,那么由微弱边缘形成的局部极大值对随着由灰度不均匀、噪声等产生的模极大值将一并滤除。因此,本文采用分块自适应法选取阈值,即将图像分成许多小块,在这些小块中求模极大值的平均值,将此平均值设为阈值,从而改变人工估算阈值不够准确的问题。
关键词:边缘检测;小波变换;多尺度边缘;模极大值;分块自适应
Abstract
Edge is the most basic feature of images,which includes the most part information of images. So obtaining the edge image has turned into a hot spot in research on image processing and analysis technology.So far,many algorithms have been presented in edge detection field.But the problems in anti-noise and edge location were not well resolved because of the complexity and inherent problems of edge detection. The reason is that the noise and edge were both high-frequency signals and it was hardly solved to distinguish between noises and edges from local high-frequency signals using current algorithms. “Time-frequency” multi-scale analysis of wavelet transform brings new ways to image edge detection.
Wavelet analysis is a new tool of time-frequency analysis after Fourier analysis. It can effectively analyze signal singularity point and detect edges while restraining noise because of its good time-frequency local property and multi-scale characteristics. So, as a powerful tool of researching non-stationary signal,it is paid more attention in the field of information processing and is widely applied in image processing technology.
In this paper,the prospect for the development and application of wavelet transformation is introduced firstly and then the research status of image edge detection is given. After studying the characteristics of the classical edge detection algorithm,summing up the advantages and disadvantages of each,wavelet theory applied in edge detection is introduced.Multiscale edge characterization edge images of different intensity and size of the structure is an important characteristic of the image. If you take the same threshold value for the entire image after the conversion, then the local maxima formed by the faint edge of the modulus maxima with uneven gray and noise generated will be filtered out. Therefore, this method uses the selected block adaptive threshold,the image is divided into many small pieces, these pieces of modulus maxima averages, the average set this threshold, thereby changing the artificial threshold inaccurate estimation problem .
Keywords: Edge detection;Wavelet transformation;Multiscale edge;Modulus maxima; Block adaptive
目 录
第一章 绪论 1
1.1研究背景及意义 1
1.2国内外研究现状 2
1.3课题的研究内容及安排 3
第二章 小波变换 5
2.1小波定义 5
2.2连续小波变换 6
2.3离散小波变换 8
2.4小波变换的多分辨率分析和Mallat算法 9
2.4.1多分辨率分析概念 9
2.4.2 Mallet算法 12
2.5 本章小结 14
第三章 图像边缘检测算法设计 15
3.1图像与数字图像 15
3.2图像边缘检测 16
3.3图像边缘检测的基本步骤 19
3.4经典边缘检测算子的检测结果与性能比较 19
3.5小波边缘检测算法 22
3.6本章小结 24
第四章 小波边缘检测程序设计 25
4.1Matlab实现小波变换 25
4.1.1一维小波变换的实现 25
4.1.2二维小波变换的实现 25
4.2小波边缘检测程序 26
4.3小波多尺度边缘检测的算法实现 27
4.4本章小结 30
第五章 实验结果分析 31
5.1实验结果及分析 31
5.2本章小结 33
第六章 总结与展望 34
6.1总结 34
6.2展望 34
致 谢 36
参考文献 37
19500字 42页
摘 要
边缘是图像的最基本特征,图像的大部分信息都存在于图像的边缘中。因此如何获取图像的边缘,成为图像处理与分析技术中的研究热点。到目前为止,已有许多图像边缘检测的算法,但由于边缘检测的复杂性和固有问题,在抗噪和边缘定位上都没有很好的解决。因为图像边缘点和噪声在频域内多为高频信号,目前的算法大多不能解决从局部高频信号中区分噪声和边缘的问题,小波变换的“时频”多尺度分析技术,为图像边缘检测提供了新的技术途径。
小波分析是继 Fourier 分析之后的新的时频域分析工具。由于其良好的时频局部化特点和多尺度特性,能有效地检测和分析信号的奇异点,在检测边缘的同时能有效地抑制噪声,成为研究非平稳信号的有力工具,在信息处理领域中倍受重视,在图像处理技术中得到广泛应用。
本文首先介绍了小波变换的发展和应用前景,概述了图像边缘检测技术的研究现状,然后对经典的图像边缘检测算法进行分析,研究各算子的特点,总结出各自的优缺点,由此引出小波变换应用于图像边缘检测中的研究。多尺度边缘表征了图像中不同强度和大小结构的边缘,是图像的重要特征。如果对变换后的整幅图像取同一阈值,那么由微弱边缘形成的局部极大值对随着由灰度不均匀、噪声等产生的模极大值将一并滤除。因此,本文采用分块自适应法选取阈值,即将图像分成许多小块,在这些小块中求模极大值的平均值,将此平均值设为阈值,从而改变人工估算阈值不够准确的问题。
关键词:边缘检测;小波变换;多尺度边缘;模极大值;分块自适应
Abstract
Edge is the most basic feature of images,which includes the most part information of images. So obtaining the edge image has turned into a hot spot in research on image processing and analysis technology.So far,many algorithms have been presented in edge detection field.But the problems in anti-noise and edge location were not well resolved because of the complexity and inherent problems of edge detection. The reason is that the noise and edge were both high-frequency signals and it was hardly solved to distinguish between noises and edges from local high-frequency signals using current algorithms. “Time-frequency” multi-scale analysis of wavelet transform brings new ways to image edge detection.
Wavelet analysis is a new tool of time-frequency analysis after Fourier analysis. It can effectively analyze signal singularity point and detect edges while restraining noise because of its good time-frequency local property and multi-scale characteristics. So, as a powerful tool of researching non-stationary signal,it is paid more attention in the field of information processing and is widely applied in image processing technology.
In this paper,the prospect for the development and application of wavelet transformation is introduced firstly and then the research status of image edge detection is given. After studying the characteristics of the classical edge detection algorithm,summing up the advantages and disadvantages of each,wavelet theory applied in edge detection is introduced.Multiscale edge characterization edge images of different intensity and size of the structure is an important characteristic of the image. If you take the same threshold value for the entire image after the conversion, then the local maxima formed by the faint edge of the modulus maxima with uneven gray and noise generated will be filtered out. Therefore, this method uses the selected block adaptive threshold,the image is divided into many small pieces, these pieces of modulus maxima averages, the average set this threshold, thereby changing the artificial threshold inaccurate estimation problem .
Keywords: Edge detection;Wavelet transformation;Multiscale edge;Modulus maxima; Block adaptive
目 录
第一章 绪论 1
1.1研究背景及意义 1
1.2国内外研究现状 2
1.3课题的研究内容及安排 3
第二章 小波变换 5
2.1小波定义 5
2.2连续小波变换 6
2.3离散小波变换 8
2.4小波变换的多分辨率分析和Mallat算法 9
2.4.1多分辨率分析概念 9
2.4.2 Mallet算法 12
2.5 本章小结 14
第三章 图像边缘检测算法设计 15
3.1图像与数字图像 15
3.2图像边缘检测 16
3.3图像边缘检测的基本步骤 19
3.4经典边缘检测算子的检测结果与性能比较 19
3.5小波边缘检测算法 22
3.6本章小结 24
第四章 小波边缘检测程序设计 25
4.1Matlab实现小波变换 25
4.1.1一维小波变换的实现 25
4.1.2二维小波变换的实现 25
4.2小波边缘检测程序 26
4.3小波多尺度边缘检测的算法实现 27
4.4本章小结 30
第五章 实验结果分析 31
5.1实验结果及分析 31
5.2本章小结 33
第六章 总结与展望 34
6.1总结 34
6.2展望 34
致 谢 36
参考文献 37