等离激元太阳能电池陷光结构模型的解析理论研究.doc

  
约47页DOC格式手机打开展开

等离激元太阳能电池陷光结构模型的解析理论研究,19000字 46页目录第一章 陷光结构及原理...........................................................................11.1陷光.....................................
编号:80-481940大小:1.46M
分类: 论文>机械工业论文

内容介绍

此文档由会员 sbsiji00 发布

等离激元太阳能电池陷光结构模型的解析理论研究

19000字 46页

目录
第一章 陷光结构及原理...........................................................................1
1.1陷光................................................................................................................1
1.1.1陷光概述.....................................................................................................1
1.1.2陷光技术.....................................................................................................1
1.2 常见陷光结构..............................................................................................3
1.2.1微纳陷光光栅结构....................................................................................3
1.2.2薄膜硅太阳能电池的陷光结构................................................................6
1.2.3微晶硅太阳能电池的陷光结构................................................................8
第二章 陷光模型....................................................................................10
2.1常见陷光模型...............................................................................................10
2.1.1周期为波长量级的陷光结构模型............................................................10
2.1.2周期光栅陷光结构模型............................................................................11
2.1.3大结构中的陷光结构模型........................................................................17
2.1.4极小内嵌物的陷光结构模型....................................................................18
2.1.5薄膜中的陷光结构模型............................................................................20
2.2常见等离激元太阳能电池陷光模型...........................................................22
2.2.1硅-金属界面表面等离激元(SPP)的陷光结构模型............................22
2.2.2 局部表面等离激元共振(LSPR)的金属球陷光结构模型.................24
第三章 等离激元太阳能电池陷光模型研究..............................................26
3.1硅层厚度对吸收增强的影响......................................................................26
3.2粒子高度对吸收增强的影响......................................................................27
3.3粒子半径对吸收增强的影响......................................................................28
3.4阵列周期对吸收增强的影响......................................................................29
3.5研究结论......................................................................................................32
总结.............................................................................................................34
致谢................................................................................................................36
参考文献........................................................................................................37
摘要 本论文对等离激元太阳能电池的陷光结构模型进行了解析理论研究。本文先通过求解麦克斯韦方程组和相应的边界条件得到了陷光结构模型的理论解析式,接着利用解析结果计算得到了特定陷光结构太阳能电池的吸收增强,最后利用计算得到的结果作图。由研究结果可知,陷光结构参数衬底厚度、粒子高度、粒子半径和阵列周期均会影响吸收增强。为了得到较高的吸收增强,衬底厚度需在2000 nm范围内取值;粒子高度和粒子半径分别在峰值75 nm和140 nm附近取值较理想,偏离峰值吸收增强均降低;对每个特定的半径,吸收增强随着周期增大而急剧增加,阵列周期在峰值附近取值可以获得较高的吸收增强,到达峰值后吸收增强一直趋向于1。随着半径的增加,峰值发生了红移。

关键词: 等离激元太阳能电池 陷光结构 吸收增强


Analytic theory of light trapping structural models at plasmonic solar cells

Abstract The key contribution of this thesis is an analytical theoretically investigation of light trapping structural models in plasmonic solar cells. In this work, we firstly obtained the analytical theoretically results of light trapping structural models by solving Maxwell’s equations with the corresponding boundary conditions. Then, we calculated the absorption enhancement of solar cells. Finally, using the obtained results, we plot pictures to quantitatively investigate the optical absorption enhancement effect. From final results, we find that the parameters of light trapping structure, that is, thickness of substrates, height and radius of particles, and array periods, have an obvious effect on absorption enhancement. In order to get a higher absorption enhancement, the value required for substrates thickness should be within the range of 2000 nm. The perfect values of particle height and radius are around the peak points with 75 nm and 140 nm respectively, and absorption enhancement decreased if values deviate from the peak points. For the array period structure, it will obtain a higher absorption enhancement when the period is in the vicinity of peak value for each specific radius. And absorption enhancement shows a sharp increase with the growing of per..