基于表面等离子体的mim波导的色散特性研究.doc

  
约38页DOC格式手机打开展开

基于表面等离子体的mim波导的色散特性研究,基于表面等离子体的mim波导的色散特性研究16600字 38页摘要 表面等离子体激元( surface plasmon polaritons , spps)是光和金属表面的自由电子相互作用所引起的一种电磁波模式。它能够在亚波长尺度内沿着金属-介质表面传播,利用spps与光的相互作用我们可以主动控制光的传播,因此表面等离...
编号:80-481943大小:1.51M
分类: 论文>机械工业论文

内容介绍

此文档由会员 sbsiji00 发布

基于表面等离子体的MIM波导的色散特性研究

16600字 38页

摘要 表面等离子体激元( Surface Plasmon Polaritons , SPPs)是光和金属表面的自由电子相互作用所引起的一种电磁波模式。它能够在亚波长尺度内沿着金属-介质表面传播,利用SPPs与光的相互作用我们可以主动控制光的传播,因此表面等离子体激元被广泛应用于纳米光学,它对实现纳米光学集成元件有着巨大的推动作用,是近年来人们研究的热点。在许许多多的表面等离子体波导结构中,金属-介质-金属(Metal Insulator Metal, MIM)是一种有众多优点备受关注的波导结构,它结构紧凑,体积小,集成度高,因而十分方便用于集成光学回路中。
本文中,我们理论分析了表面等离子体激元的色散关系以及其关键参数,了解其传输特性和研究意义,推导得到SPPs的关键参数。接下来,我们采用基于有限元法的COMSOL4.4软件,通过Drude理论建立了MIM的表面等立体波导,并模拟了MIM结构中光传播的色散关系,得到了电磁波传输的能量分布图。为了进一步了解MIM结构中等离子体波的色散关系,我们先研究SPP在半无限长金属-介质界面的传输模式,通过公式推导可知,该结构中不存在TE模,SPP是以TM模的形式存在的表面电磁波。此外,我们在色散关系的基础上求解了群速度、群速度色散。设定波导一定参数后,我们选取恰当的频率点,优化参数,达到最好的传输效果。我们的目的是保持慢群速度效应的同时,也能抑制相应群速度色散的特性,也就是在保证不产生破坏性失真的前提下可以应用传输光信号。
由于金属对光波有较强的吸收能力,因此即使MIM结构能将电磁场约束在亚波长尺寸内,但是在光的传播过程中将会产生巨大损耗。基于表面等离子体的研究还有很大的发展空间,这些研究工作将会极大推动纳米光学的发展。
关键词:表面等离子体,金属-介质-金属,色散关系,波导



Research on the dispersion properties of surface plasmon MIM waveguide
Abstract surface plasmon polaritons (SPPs) is an electromagnetic wave pattern caused by the interaction of light and free electron metal surface.It can spread along in a subwavelength scale on metal - dielectric surface , we can actively control the propagation of light by using the interaction of SPPs and light.Therefore, surface plasmons are widely used in nano-optics, it plays a huge role in promoting the development nano-optical integrated components ,it has been the research hotspot in recent years.during so many surface plasmon waveguide structures, the metal - dielectric - metal (MIM) waveguide has been concerned since his advantages including compact, small size, high integration, which is very convenient for integrated optical circuits.
In this paper, we analyze the theory of surface plasmon dispersion relation of plasma and its characteristic length, understand its transmission characteristics and significance, and key parameters of SPPs was derived. Next, we discuss the light propagation mode of MIM structure waveguide ,and establish the Drude model to get the dielectric constant of the metal in the form of the free electrons inside the reaction under the electromagnetic effect. To further understand the plasma wave structure , we first study transfer mode of the SPP in the semi-infinite metal - dielectric interface, by formula derivation shows that the TE mode does not exist in the structure , SPP is a kind of surface electromagnetic wave existing in the form of TM mode , we can obtain the formula of dispersion relation about SPP on the metal surface by solving the boundary conditions. We use COMSOL4.4 based on the finite element method and dispersion relation between dispersion relation in the MIM ,group velocity and group velocity dispersioncan be solved through the software . After setting the waveguide certain parameters, we select the appropriate frequency to achieve the best results. Our aim is to keep the effects of the slow group velocity, but also can restrain the characteristics of group velocity dispersion , that is, we can transform optical signals at slow group velocities under the premise of ensuring no destructive distortion.

Since the strong light absorption capacity of metal , even if the MIM structure waveguide can restrain electromagnetic field in subwavelength size, but a great loss will be produced during the transmission of light . There is still much room for development of research based on surface plasmons , these studies will greatly promote the development of nano-optics.
Keyword: Surface plasmon polaritons, Metal Insulator Metal,Dispersion relation,Waveguide




目录
绪论 1
第一章 表面等离子体激元 3
1.1 等离子体简介 3
1.2 表面等离子体激元概念 3
1.3 表面等离子体激元的关键参数 5
第二章 慢光理论 7
2.1 基本概念 7
2.2 研究现状与前景 9
第三章 表面等离子体波导结构介绍 11
3.1 金属的光学特性 11
3.2 MIM结构介绍 13
3.3 MIM中波的传输模式 15
第四章 数值仿真 16
4.1 Drude模型 16
4.2 表面等离子体激元的色散关系 20
4.3 基于有限元的Comsol软件的介绍 23
4.4 MIM模型的建立和分析 26
4.4.1 MIM模型的建立 26
4.4.2 色散关系求解和分析 27
4.4.3 MIM(Au)的群速度 28
4.4.4 MIM(Au)的共振能量分布和谐振腔性质 28
4.4.5 MIM波导(Ag)内的能量分布 29
第五章 总结 31
致谢 32
参考文献 33