基于自适应神经模糊控制的研究与设计.doc
约60页DOC格式手机打开展开
基于自适应神经模糊控制的研究与设计,页数:60字数:33567 摘 要混凝环节是水处理中非常重要的环节,准确的投加混凝剂可以有效减轻过滤、消毒设备的负担,是提高水质、取的良好混凝效果及经济效益的关键。目前国内众多水厂采用的混凝投药控制主要是基于流动电流的反馈投药控制和基于传统数学模型的前...
内容介绍
此文档由会员 cnlula 发布
基于自适应神经模糊控制的研究与设计
页数:60 字数:33567
基于自适应神经模糊控制的研究与设计
摘 要
混凝环节是水处理中非常重要的环节,准确的投加混凝剂可以有效减轻过滤、消毒设备的负担,是提高水质、取的良好混凝效果及经济效益的关键。目前国内众多水厂采用的混凝投药控制主要是基于流动电流的反馈投药控制和基于传统数学模型的前馈投药控制,控制效果都不太理想,存在沉淀池出水浊度波动大,药剂浪费严重等问题。如何在线得到适合水质变化的最佳混凝剂量,实现混凝剂量的最佳投加,是目前水工业中亟待解决的问题。
混凝过程包括混凝剂的投加、混合、絮凝和沉淀部分,这个过程需要40 min以上的时间;影响因素众多,受原水浊度、温度、PH、碱度等的影响,还受配水流量和混凝工艺的影响,是个复杂的物理化学过程,难以准确数学模型。混凝过程是大滞后、非线性、时变系统,难以按传统的控制方法进行有效的投药控制。蓬勃发展的智能控制理论为这一问题的解决提供了新的出路。
本文首先介绍了水处理过程和混凝投药控制的发展、现状,在简要介绍智能控制理论中的神经网络控制和模糊逻辑系统之后,引入神经网络与模糊逻辑的融合,并详细介绍了一种用多层前馈神经网络优化模糊逻辑系统的自适应模糊推理系统-ANFIS。然后在分析混凝过程特性和目前主要使用的投药控制方案的基础上,分别设计了能够取代烧杯试验投药控制的基于原水浊度、温度、PH、碱度的BP神经网络前馈投药控制器和ANFIS前馈投药控制器,重点为后者。在ANFIS前馈投药控制器的设计中,运用减法聚类对样本数据进行空间划分,获取初始模糊隶属函数和模糊规则,得到ANFIS模型的初始结构。用成功的烧杯试验历史数据进行了仿真验证,为了比较还进行了传统的数学模型前馈投药控制仿真,从投药预测值-实际值的对比图和均方根误差(RMSE)等可以看出ANFIS投药前馈控制模型明显优于其它两种控制模型,它能够根据原水水质适时有效预测混凝投药量,而神经网络前馈控制器模型的投药预测效果一般。最后本文又进行了ANFIS前馈投药控制的工程实现方案初步设计。
关键词:混凝投药控制, 前馈控制, BP神经网络, 自适应神经模糊推理系统,水处理
Abstract
Coagulation is one of the most important processes of water treatment. It can reduce the operating load of filtration and antisepsis equipments by adding coagulant dosing accurately, which is very important to improve water qualities and economic benefits. At present the dosing control of domestic factory is based on streaming current detector (SCD) feed-back control and based on mathematic model feed-forward coagulant dosing control. But the results of both coagulant control schemes are not satisfying. There are some questions of chemicals wastage and sediment output water qualities varieties. It is a pending problem how to calculate the efficient coagulant dosage according currently raw water qualities in water treatment industry.
It takes more than 40 minutes to finish coagulant process that includes the projecting of chemicals, mixing, flocculating and subsiding. It is affected by many factors such as many characteristics of raw water quality, capacity of treating water and coagulant techniques. Coagulant process is not only a complicity physical-chemical process of difficultly modeling but also a big time-delay, nonlinear and uncertain system. So it is difficult to control by traditional control approaches. The blooming artificial control provides a new way for coagulation control.
In this thesis,the water treatment process and the actuality and trend of coagulant dosing control scheme are first introduced. After briefly introduced Neural Network Control (NNC) and Fuzzy Control of IC, Adaptive-Network-Based Fuzzy Inference System (ANFIS), one of the combination of NNC and FC, is expatiated in detail. By analyzing the characteristics of coagulant process and the main schemes of coagulant dosing control, NN feed-forward controller and ANFIS feed-forward controller based on raw water turbidity, temperature, PH, alkalinity are designed which can substitute Jar-Test coagulant dosage control. In designing ANFIS scheme, some sample data is classified by subtractive cluster method, and some fuzzy membership functions and rules are obtained, and an initial ANFIS structure is established. NN control model and ANFIS control model are simulated and tested by using Jar-test historical data. Traditional mathematic model is also simulated for comparison. The results of simulation suggest that ANFIS feed-forward control model is distinct superior to the others. It can predict coagulant dosage effectively according to raw water in time. The control performance of NN model is generic, not very good. At last, the scheme of ANFIS feed-forward control of coagulant dosage is discussed on how to practice in engineering.
Keyword: coagulant dosing control, feed-forward control, BP network, adaptive-network-based fuzzy inference system, water treatment
目 录
第一章 绪论 ………………………………………………………………………6
1.1水处理过程…………………………………………………………………6
1.1.1水中杂质及处理方法…………………………………………………6
1.1.2 净水处理基本工艺 ……………………………………………… 7
1.1.2.1 预处理…………………………………………………………7
1.1.2.2混凝、沉淀……………………………………………………8
1.1.2.3 过滤、消毒……………………………………………………8
1.2 混凝投药系统研究意义 ………………………………………………9
1.3 混凝投药控制的发展、现状 …………………………………………9
1.3.1 手动控制阶段 …………………………………………………10
1.3.2 自动控制阶段 …………………………………………………10
1.3.2.1 简单反馈控制系统………………………………………10
1.3.2.2 前馈控制系统……………………………………………10
1.3.2.3 复合控制系统……………………………………………12
1.3.3智能控制阶段……………………………………………………13
1.4 本文主要工作………………………………………………………14
第二章 神经模糊控制理论述 ………………………………………………15
2.1神经网络控制…………………………………………………………15
2.1.1神经网络结构…………………………………………………… 16
2.1.2 BP神经网络……………………………………………… 17
2.1.3 神经网络特点 …………………………………………………20
2.2 模糊控制……………………………………………………………… 20
2.2.1基本概念,基本思想 ……………… …………………………21
2.2.2模糊控制的特点…………………………………………………23
2.3 自适应神经模糊推理系统……………………………………………23
2.4 小结………………………………………………………………… 27
第三章 混凝投药控制系统分析………………………………………………28
3.1 影响混凝效果因素……………………………………………………28
3.2 被控对象特性…………………………………………………………29
3.2.1 影响混凝的水质因素分析………………………………………29
3.2.2混凝过程的主要特点……………………………………………30
3.3 混凝投药控制方案分析 ……………………………………………30
3.3.1 反馈投药控制方式 ……………………………………………31
3.3.2前馈投药控制方式………………………………………………32
3.3.3本文采用方案 …………………………………………………32
3.3.4 小节 ……………………………………………………………35
第四章 混凝投药量前馈控制器的设计和仿真…………………………………36
4.1 数据来源………………………………………………………………36
4.2 投药量的神经网络前馈控制器………………………………………38
4.2.1 BP神经网络控制器的设计……………………………………38
4.2.1.1 数据归一化……………………………………………38
4.2.2 仿真实现………………………………………………………41
4.3混凝投药量的ANFIS前馈控制………………………………………43
4.3.1初始模糊推理系统的建立……………………………………43
4.3.1.1减法聚类 ……………………………………………45
4.3.1.2 由聚类中心构造一阶T-S模型 ……………………45
4.3.2 仿真实现…………………………………………………… 46
4.4 传统的回归模型法仿真结果………………………………………48
4.5 仿真结果比较分析…………………………………………………50
4.6 小结…………………………………………………………………51
第五章 ANFIS投
页数:60 字数:33567
基于自适应神经模糊控制的研究与设计
摘 要
混凝环节是水处理中非常重要的环节,准确的投加混凝剂可以有效减轻过滤、消毒设备的负担,是提高水质、取的良好混凝效果及经济效益的关键。目前国内众多水厂采用的混凝投药控制主要是基于流动电流的反馈投药控制和基于传统数学模型的前馈投药控制,控制效果都不太理想,存在沉淀池出水浊度波动大,药剂浪费严重等问题。如何在线得到适合水质变化的最佳混凝剂量,实现混凝剂量的最佳投加,是目前水工业中亟待解决的问题。
混凝过程包括混凝剂的投加、混合、絮凝和沉淀部分,这个过程需要40 min以上的时间;影响因素众多,受原水浊度、温度、PH、碱度等的影响,还受配水流量和混凝工艺的影响,是个复杂的物理化学过程,难以准确数学模型。混凝过程是大滞后、非线性、时变系统,难以按传统的控制方法进行有效的投药控制。蓬勃发展的智能控制理论为这一问题的解决提供了新的出路。
本文首先介绍了水处理过程和混凝投药控制的发展、现状,在简要介绍智能控制理论中的神经网络控制和模糊逻辑系统之后,引入神经网络与模糊逻辑的融合,并详细介绍了一种用多层前馈神经网络优化模糊逻辑系统的自适应模糊推理系统-ANFIS。然后在分析混凝过程特性和目前主要使用的投药控制方案的基础上,分别设计了能够取代烧杯试验投药控制的基于原水浊度、温度、PH、碱度的BP神经网络前馈投药控制器和ANFIS前馈投药控制器,重点为后者。在ANFIS前馈投药控制器的设计中,运用减法聚类对样本数据进行空间划分,获取初始模糊隶属函数和模糊规则,得到ANFIS模型的初始结构。用成功的烧杯试验历史数据进行了仿真验证,为了比较还进行了传统的数学模型前馈投药控制仿真,从投药预测值-实际值的对比图和均方根误差(RMSE)等可以看出ANFIS投药前馈控制模型明显优于其它两种控制模型,它能够根据原水水质适时有效预测混凝投药量,而神经网络前馈控制器模型的投药预测效果一般。最后本文又进行了ANFIS前馈投药控制的工程实现方案初步设计。
关键词:混凝投药控制, 前馈控制, BP神经网络, 自适应神经模糊推理系统,水处理
Abstract
Coagulation is one of the most important processes of water treatment. It can reduce the operating load of filtration and antisepsis equipments by adding coagulant dosing accurately, which is very important to improve water qualities and economic benefits. At present the dosing control of domestic factory is based on streaming current detector (SCD) feed-back control and based on mathematic model feed-forward coagulant dosing control. But the results of both coagulant control schemes are not satisfying. There are some questions of chemicals wastage and sediment output water qualities varieties. It is a pending problem how to calculate the efficient coagulant dosage according currently raw water qualities in water treatment industry.
It takes more than 40 minutes to finish coagulant process that includes the projecting of chemicals, mixing, flocculating and subsiding. It is affected by many factors such as many characteristics of raw water quality, capacity of treating water and coagulant techniques. Coagulant process is not only a complicity physical-chemical process of difficultly modeling but also a big time-delay, nonlinear and uncertain system. So it is difficult to control by traditional control approaches. The blooming artificial control provides a new way for coagulation control.
In this thesis,the water treatment process and the actuality and trend of coagulant dosing control scheme are first introduced. After briefly introduced Neural Network Control (NNC) and Fuzzy Control of IC, Adaptive-Network-Based Fuzzy Inference System (ANFIS), one of the combination of NNC and FC, is expatiated in detail. By analyzing the characteristics of coagulant process and the main schemes of coagulant dosing control, NN feed-forward controller and ANFIS feed-forward controller based on raw water turbidity, temperature, PH, alkalinity are designed which can substitute Jar-Test coagulant dosage control. In designing ANFIS scheme, some sample data is classified by subtractive cluster method, and some fuzzy membership functions and rules are obtained, and an initial ANFIS structure is established. NN control model and ANFIS control model are simulated and tested by using Jar-test historical data. Traditional mathematic model is also simulated for comparison. The results of simulation suggest that ANFIS feed-forward control model is distinct superior to the others. It can predict coagulant dosage effectively according to raw water in time. The control performance of NN model is generic, not very good. At last, the scheme of ANFIS feed-forward control of coagulant dosage is discussed on how to practice in engineering.
Keyword: coagulant dosing control, feed-forward control, BP network, adaptive-network-based fuzzy inference system, water treatment
目 录
第一章 绪论 ………………………………………………………………………6
1.1水处理过程…………………………………………………………………6
1.1.1水中杂质及处理方法…………………………………………………6
1.1.2 净水处理基本工艺 ……………………………………………… 7
1.1.2.1 预处理…………………………………………………………7
1.1.2.2混凝、沉淀……………………………………………………8
1.1.2.3 过滤、消毒……………………………………………………8
1.2 混凝投药系统研究意义 ………………………………………………9
1.3 混凝投药控制的发展、现状 …………………………………………9
1.3.1 手动控制阶段 …………………………………………………10
1.3.2 自动控制阶段 …………………………………………………10
1.3.2.1 简单反馈控制系统………………………………………10
1.3.2.2 前馈控制系统……………………………………………10
1.3.2.3 复合控制系统……………………………………………12
1.3.3智能控制阶段……………………………………………………13
1.4 本文主要工作………………………………………………………14
第二章 神经模糊控制理论述 ………………………………………………15
2.1神经网络控制…………………………………………………………15
2.1.1神经网络结构…………………………………………………… 16
2.1.2 BP神经网络……………………………………………… 17
2.1.3 神经网络特点 …………………………………………………20
2.2 模糊控制……………………………………………………………… 20
2.2.1基本概念,基本思想 ……………… …………………………21
2.2.2模糊控制的特点…………………………………………………23
2.3 自适应神经模糊推理系统……………………………………………23
2.4 小结………………………………………………………………… 27
第三章 混凝投药控制系统分析………………………………………………28
3.1 影响混凝效果因素……………………………………………………28
3.2 被控对象特性…………………………………………………………29
3.2.1 影响混凝的水质因素分析………………………………………29
3.2.2混凝过程的主要特点……………………………………………30
3.3 混凝投药控制方案分析 ……………………………………………30
3.3.1 反馈投药控制方式 ……………………………………………31
3.3.2前馈投药控制方式………………………………………………32
3.3.3本文采用方案 …………………………………………………32
3.3.4 小节 ……………………………………………………………35
第四章 混凝投药量前馈控制器的设计和仿真…………………………………36
4.1 数据来源………………………………………………………………36
4.2 投药量的神经网络前馈控制器………………………………………38
4.2.1 BP神经网络控制器的设计……………………………………38
4.2.1.1 数据归一化……………………………………………38
4.2.2 仿真实现………………………………………………………41
4.3混凝投药量的ANFIS前馈控制………………………………………43
4.3.1初始模糊推理系统的建立……………………………………43
4.3.1.1减法聚类 ……………………………………………45
4.3.1.2 由聚类中心构造一阶T-S模型 ……………………45
4.3.2 仿真实现…………………………………………………… 46
4.4 传统的回归模型法仿真结果………………………………………48
4.5 仿真结果比较分析…………………………………………………50
4.6 小结…………………………………………………………………51
第五章 ANFIS投