直接启动齿轮加工机床精度研究(本科毕业论文设计).doc
约39页DOC格式手机打开展开
直接启动齿轮加工机床精度研究(本科毕业论文设计),摘要齿轮加工正朝着环保、高效、高精度加工方向发展,齿轮加工机床正朝着全数控、功能复合、柔性、自动化、安全性及网络化方向发展。传统机械式滚齿机传动结构异常复杂、传动效率低、传动精度差、磨损严重、切削速度低,在各方面都不能满足现代滚齿机的性能要求;因此,国外的部分厂家从最近几年才开始研制“零传动”齿轮加工机床。“零传动”即...
内容介绍
此文档由会员 genmail 发布
摘 要
齿轮加工正朝着环保、高效、高精度加工方向发展,齿轮加工机床正朝着全数控、功能复合、柔性、自动化、安全性及网络化方向发展。传统机械式滚齿机传动结构异常复杂、传动效率低、传动精度差、磨损严重、切削速度低,在各方面都不能满足现代滚齿机的性能要求;因此,国外的部分厂家从最近几年才开始研制“零传动”齿轮加工机床。“零传动”即直接驱动,直接驱动齿轮加工机床突破了传统齿轮加工机床的结构设计原理,采用电主轴和内置力矩电机直接驱动滚刀旋转运动和工件轴旋转运动,是齿轮机床设计技术的重大变革。
本文先介绍了直接驱动齿轮加工机床的基本布局形式,机床的床身结构,机床的排屑系统,机床传动系统以及主轴系统。从而大概了解了直接驱动齿轮加工机床的空间结构以及运动形式。
本文的重点是将多体系统理论与齿轮啮合原理结合起来,根据数控滚齿机运动的实际情况,在比较全面地考虑了由于制造误差、安装误差、运动控制不精确以及其它原因引起的机床部件初始位置误差与运动误差等因素后,对数控滚齿机的滚齿啮合进行了分析,建立了齿轮节距误差的误差模型。并对该模型进行试切验证,可以得出该模型的可用性。该模型包含了由于制造、安装、运动控制不精确和刀具、床身、工件热变形以及其它因素引起的初始位置误差与运动误差,反映了机床误差的实际变化规律。模型的建立为机床误差进行有效预测、控制和补偿,进一步提高机床加工精度奠定了理论基础。
最后本文通过分析动态特性对齿轮加工机床的加工精度的影响,提出了提高机床动态特性的措施,着重从工件主轴和刀具主轴着手,提出提高动态特性的措施,来增加机床的抗振性和切削稳定性,以达到要求的加工精度。
关键词:直接驱动,滚齿机,多体系统理论,误差建模,加工精度,动态特性
ABSTRACT
The gear processing is developed an environment protecting, high-efficiency, high-precision mode, meanwhile the gear machine tools developed the completely-digital-control, function-complex, flexible, automatic, secure and network mode. Traditional gear hobbing machine can not satisfy performance demand of modern gear hobbing machine, so ,some overseas companies have started to study zero-chain gear hobbing machine. zero-chain is direct drive, direct drive gear hobbing machine breaks through structure design principle of traditional gear cutting machine ,in which motorized spindle and built-in torque motor have been applied to realize rotary of hobbing cutter and workpiece-shaft.it is an important technological innovation of the design of gear machine tool.
In the first, This article introduces the general layout of the direct-drive gear hobbing machine,bed structure and chip evacuation system of the machine ,drive system and main spindle system of the machine ,to comprehend the space structure and the movement form.
The important of this article is combining multi-body System theory with meshing principle, the paper analyzed hobbing mesh of NC gear hobbing machine, built error model of workpiece tooth face’s error. The model was built according to the actual conditions of the NC gear hobbing machine moving. It includes initial position error and movement error caused by manufacture, assemble, imprecision motion controlling, temperature distortion and other reasons. It also responds the actual changing rule of the machine tool error. The setting-up of the model is a theoretical foundation of controlled and compensated effectively for the error of the machine tool, and it can improve the machining precision of the machine tool further.
In the end, this article ansyses how the dynamic performance affect the manufacturing precision, to present how to improve the dynamic performance. Emphatically, this article present how to improve the dynamic performance on workpiece spin system and tool spindle system to increase the ability of resist vibration and cutting stability, so as to reach the manufacturing precision.
Key words:Direct-drive, Gear Hobbing Machine, Multi-body System Theory, Error Modeling, Manufacturing Precision, Dynamic Performance
目 录
中文摘要 Ⅰ
ABSTRACT Ⅱ
1绪论 1
1.1 齿轮加工机床 1
1.2 直接驱动齿轮加工机床 1
1.3 数控机床加工精度的国内外研究概况 2
1.4 课题来源及研究意义 3
1.4.1 课题来源 3
1.4.2 课题的研究意义 3
1.5 本文研究的主要内容 4
2 直接驱动齿轮加工机床总体结构概述 5
2.1 直接驱动齿轮加工机床总体布局 5
2.2 直接驱动齿轮加工机床床身及排屑系统 6
2.2.1 直接驱动齿轮加工机床床身结构 6
2.2.2直接驱动齿轮加工机床排屑系统 7
2.3 直接驱动齿轮加工机床传动系统概述 7
2.3.1 直接驱动齿轮加工机床运动概述 7
2.3.2 直接驱动齿轮加工机床传动系统 8
2.4 直接驱动齿轮加工机床主轴系统概述 8
2.4.1 直接驱动齿轮加工机床工件主轴系统概述 8
2.4.2 直接驱动齿轮加工机床刀具主轴系统概述 9
2.5 本意小结 10
3 基于多体系统的直接驱动齿轮加工机床加工精度分析 11
3.1 多体系统误差分析建模概述 11
3.2 基于多体系统的直接驱动齿轮加工机床加工精度分析 11
3.2.1 直接驱动齿轮加工机床拓扑结构描述 11
3.2.2 直接驱动加工机床坐标系的设定 14
3.2.3 理想运动的变换矩阵 14
3.2.4 各体之间影响齿轮节距误差的误差变换矩阵 16
3.2.5 相邻体间影响节距误差的变换矩阵的建立 20
3.3 直接驱动齿轮加工机床的齿轮节距误差模型的建立 22
3.3.1 直接..
齿轮加工正朝着环保、高效、高精度加工方向发展,齿轮加工机床正朝着全数控、功能复合、柔性、自动化、安全性及网络化方向发展。传统机械式滚齿机传动结构异常复杂、传动效率低、传动精度差、磨损严重、切削速度低,在各方面都不能满足现代滚齿机的性能要求;因此,国外的部分厂家从最近几年才开始研制“零传动”齿轮加工机床。“零传动”即直接驱动,直接驱动齿轮加工机床突破了传统齿轮加工机床的结构设计原理,采用电主轴和内置力矩电机直接驱动滚刀旋转运动和工件轴旋转运动,是齿轮机床设计技术的重大变革。
本文先介绍了直接驱动齿轮加工机床的基本布局形式,机床的床身结构,机床的排屑系统,机床传动系统以及主轴系统。从而大概了解了直接驱动齿轮加工机床的空间结构以及运动形式。
本文的重点是将多体系统理论与齿轮啮合原理结合起来,根据数控滚齿机运动的实际情况,在比较全面地考虑了由于制造误差、安装误差、运动控制不精确以及其它原因引起的机床部件初始位置误差与运动误差等因素后,对数控滚齿机的滚齿啮合进行了分析,建立了齿轮节距误差的误差模型。并对该模型进行试切验证,可以得出该模型的可用性。该模型包含了由于制造、安装、运动控制不精确和刀具、床身、工件热变形以及其它因素引起的初始位置误差与运动误差,反映了机床误差的实际变化规律。模型的建立为机床误差进行有效预测、控制和补偿,进一步提高机床加工精度奠定了理论基础。
最后本文通过分析动态特性对齿轮加工机床的加工精度的影响,提出了提高机床动态特性的措施,着重从工件主轴和刀具主轴着手,提出提高动态特性的措施,来增加机床的抗振性和切削稳定性,以达到要求的加工精度。
关键词:直接驱动,滚齿机,多体系统理论,误差建模,加工精度,动态特性
ABSTRACT
The gear processing is developed an environment protecting, high-efficiency, high-precision mode, meanwhile the gear machine tools developed the completely-digital-control, function-complex, flexible, automatic, secure and network mode. Traditional gear hobbing machine can not satisfy performance demand of modern gear hobbing machine, so ,some overseas companies have started to study zero-chain gear hobbing machine. zero-chain is direct drive, direct drive gear hobbing machine breaks through structure design principle of traditional gear cutting machine ,in which motorized spindle and built-in torque motor have been applied to realize rotary of hobbing cutter and workpiece-shaft.it is an important technological innovation of the design of gear machine tool.
In the first, This article introduces the general layout of the direct-drive gear hobbing machine,bed structure and chip evacuation system of the machine ,drive system and main spindle system of the machine ,to comprehend the space structure and the movement form.
The important of this article is combining multi-body System theory with meshing principle, the paper analyzed hobbing mesh of NC gear hobbing machine, built error model of workpiece tooth face’s error. The model was built according to the actual conditions of the NC gear hobbing machine moving. It includes initial position error and movement error caused by manufacture, assemble, imprecision motion controlling, temperature distortion and other reasons. It also responds the actual changing rule of the machine tool error. The setting-up of the model is a theoretical foundation of controlled and compensated effectively for the error of the machine tool, and it can improve the machining precision of the machine tool further.
In the end, this article ansyses how the dynamic performance affect the manufacturing precision, to present how to improve the dynamic performance. Emphatically, this article present how to improve the dynamic performance on workpiece spin system and tool spindle system to increase the ability of resist vibration and cutting stability, so as to reach the manufacturing precision.
Key words:Direct-drive, Gear Hobbing Machine, Multi-body System Theory, Error Modeling, Manufacturing Precision, Dynamic Performance
目 录
中文摘要 Ⅰ
ABSTRACT Ⅱ
1绪论 1
1.1 齿轮加工机床 1
1.2 直接驱动齿轮加工机床 1
1.3 数控机床加工精度的国内外研究概况 2
1.4 课题来源及研究意义 3
1.4.1 课题来源 3
1.4.2 课题的研究意义 3
1.5 本文研究的主要内容 4
2 直接驱动齿轮加工机床总体结构概述 5
2.1 直接驱动齿轮加工机床总体布局 5
2.2 直接驱动齿轮加工机床床身及排屑系统 6
2.2.1 直接驱动齿轮加工机床床身结构 6
2.2.2直接驱动齿轮加工机床排屑系统 7
2.3 直接驱动齿轮加工机床传动系统概述 7
2.3.1 直接驱动齿轮加工机床运动概述 7
2.3.2 直接驱动齿轮加工机床传动系统 8
2.4 直接驱动齿轮加工机床主轴系统概述 8
2.4.1 直接驱动齿轮加工机床工件主轴系统概述 8
2.4.2 直接驱动齿轮加工机床刀具主轴系统概述 9
2.5 本意小结 10
3 基于多体系统的直接驱动齿轮加工机床加工精度分析 11
3.1 多体系统误差分析建模概述 11
3.2 基于多体系统的直接驱动齿轮加工机床加工精度分析 11
3.2.1 直接驱动齿轮加工机床拓扑结构描述 11
3.2.2 直接驱动加工机床坐标系的设定 14
3.2.3 理想运动的变换矩阵 14
3.2.4 各体之间影响齿轮节距误差的误差变换矩阵 16
3.2.5 相邻体间影响节距误差的变换矩阵的建立 20
3.3 直接驱动齿轮加工机床的齿轮节距误差模型的建立 22
3.3.1 直接..