工程结构单元的有限元建模和剪应力分析[外文翻译].doc

约19页DOC格式手机打开展开

工程结构单元的有限元建模和剪应力分析[外文翻译],附件c:译文工程结构单元的有限元建模和剪应力分析j brnic,m canadija,g turkalj, and d lanc摘要:这篇论文研究了用有限元方法对工程中均匀截面梁的剪应力分析。分析基于一种特殊的单元体,这种单元体的属性,如刚度矩阵和载荷向量,都是由轴向的结点位移推出的。从几何角度看,这种单元是三维的,但...
编号:16-99655大小:1.07M
分类: 论文>外文翻译

内容介绍

此文档由会员 weiyong 发布

附件C:译文

工程结构单元的有限元建模和剪应力分析
J Brnic,M Canadija,G Turkalj, and D Lanc

摘要:这篇论文研究了用有限元方法对工程中均匀截面梁的剪应力分析。分析基于一种特殊的单元体,这种单元体的属性,如刚度矩阵和载荷向量,都是由轴向的结点位移推出的。从几何角度看,这种单元是三维的,但它的应变或应力张量却都是二维的。上述应力分析与截面形状和材料属性无关。依据圣维南扭转理论和梁上的剪力载荷,这些单元承受剪应力。刚度矩阵和载荷向量由一般容易得到的形式推出。材料假定为各向同性的和线性弹性的。本文提出的方法可以应用于诸如船舶、飞机、飞船等结构的分析。在这种方法的基础上,已经开发出一个计算机程序。该应力分析方法的准确性,可由举出的例子说明。并与解析法及其他数值方法做了比较。
关键词:剪应力分析,圣维南扭转理论,梁上的剪力载荷,有限元法,新的四边形单元

1 引言
这篇论文研究的是独立几何形状截面结构体的剪应力分析。应力分析可以采用解析法(对于简单几何形状的结构体)、数值法如有限元法或者实验方法。因为解析法是基于变形连续假设和弹性理论的,所以只适用于十分简单或理想模型的几何体。另一方面,实验方法则要耗费大量的时间和金钱。这样一来,数值方法,尤其是有限元法被认为是最好的方法[1,2]。因此,在设计过程中必须建立一个合适的数学模型对结构进行分析。
有限元法有很多优点[3,5]。例如,有限元法可以解决任意形状结构体或整个结构、任意载荷类型、不同材料属性等的结构问题。矩阵概念以及其在计算机上的轻松实现都是有限元法的优势。文献中可以找到大量的单元类型及它们适用的几何形状、应力状态、应变状态、载荷类型等等[6-8]。很多软件包/系统,如MSC.Nastran、Ansys、Ideas等可适用具体要求和广泛需求。与现有有限元商业软件相比,本文提出的方法优势如下。这种方法只需把梁的截面离散化。而要用商业软件对截面受扭矩的梁进行分析,需要建立完整的梁的三维有限元模型。因此,该方法在建模方面用时较少。当只有一个或几个截面需要进行分析时,这种方法尤其有用。此外,本文提出的单元每个结点只有一个自由度,少于商业软件